Skip to main content

Advertisement

Log in

Coherent manipulation of optical energy density of two-wave interference in atomic medium

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A four-level N-type \(^{87}\)Rb atomic system driven by probe field and two interacting control fields is used to control and manipulate the energy density of the probe pulse. Interesting modification and fluctuation in the energy density is investigated with detunings of probe and control fields, Rabi frequency, phase angle between two interacting waves and position. The stored energy density shows periodic features and spatial localizations appearing due to coherence effect. The energy density varies from 30 to 100% with probe detuning and position versus wavelength of light in free space. The energy density varies from 0 to 100% with control field Rabi frequency. This modified work is useful for the unidirectional optical interfaces and the quantum spin-Hall effect of the light beam and absorption of probes particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Allen, S.M. Barnett, M.J. Padgett, Momentum Opt. Angul. (2003)

  2. A. Bekshaev, M. Soskin, M. Vasnetsov, Paraxial light beams with angular momentum. arXiv preprint arXiv:0801.2309 (2008)

  3. A. Bekshaev, M. Soskin, M. Vasnetsov. Paraxial light beams with angular momentum. arXiv preprint arXiv:0801.2309 (2008)

  4. J.P. Torres, L. Torner (eds.), “Twisted Photons’’: Applications of Light with Orbital Angular Momentum (Wiley, 2011)

    Google Scholar 

  5. D.L. Andrews (ed.), The Angular Momentum of Light (Cambridge University Press, 2012)

    Google Scholar 

  6. L. Allen, M.J. Padgett, M. Babiker, IV The orbital angular momentum of light, in Progress in Optics, vol. 39. (Elsevier, 1999), pp. 291–372

  7. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305–310 (2007)

    Article  Google Scholar 

  8. S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photon. Rev. 2(4), 299–313 (2008)

    Article  ADS  Google Scholar 

  9. A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011)

    Article  Google Scholar 

  10. A. Bekshaev, K.Y. Bliokh, M. Soskin, Internal flows and energy circulation in light beams. J. Opt. 13(5), 053001 (2011)

    Article  ADS  Google Scholar 

  11. C.C. Tannoudji, G. Grynberg, J. Dupont-Roe, Atom–photon interactions (1992)

  12. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    Article  ADS  Google Scholar 

  13. S. Stenholm, The semiclassical theory of laser cooling. Rev. Mod. Phys. 58(3), 699 (1986)

    Article  ADS  Google Scholar 

  14. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    Article  ADS  Google Scholar 

  15. S. Huard, C. Imbert, Measurement of exchanged momentum during interaction between surface-wave and moving atom. Opt. Commun. 24(2), 185–189 (1978)

    Article  ADS  Google Scholar 

  16. K.Y. Bliokh, A.Y. Bekshaev, A.G. Kofman, F. Nori, Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New J. Phys. 15(7), 073022 (2013)

    Article  ADS  MATH  Google Scholar 

  17. S.M. Barnett, M.V. Berry, Superweak momentum transfer near optical vortices. J. Opt. 15(12), 125701 (2013)

    Article  ADS  Google Scholar 

  18. K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5(1), 1–8 (2014)

    Article  Google Scholar 

  19. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles. Nature 394(6691), 348–350 (1998)

    Article  ADS  Google Scholar 

  20. A.T. ONeil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett 88, 053601 (2002)

    Article  ADS  Google Scholar 

  21. V. Garcés-Chávez, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91(9), 093602 (2003)

    Article  ADS  Google Scholar 

  22. A. Ashkin, J.P. Gordon, Stability of radiation-pressure particle traps: an optical Earnshaw theorem. Opt. Lett. 8(10), 511–513 (1983)

    Article  ADS  Google Scholar 

  23. M. Nieto-Vesperinas, J.J. Sáenz, R. Gómez-Medina, L. Chantada, Optical forces on small magnetodielectric particles. Opt. Express 18(11), 11428–11443 (2010)

    Article  ADS  Google Scholar 

  24. A.Y. Bekshaev, Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows. J. Opt. 15(4), 044004 (2013)

    Article  ADS  Google Scholar 

  25. A. Canaguier-Durand, A. Cuche, C. Genet, T.W. Ebbesen, Force and torque on an electric dipole by spinning light fields. Phys. Rev. A 88(3), 033831 (2013)

    Article  ADS  Google Scholar 

  26. K.Y. Bliokh, Y.S. Kivshar, F. Nori, Magnetoelectric effects in local light–matter interactions. Phys. Rev. Lett. 113(3), 033601 (2014)

    Article  ADS  Google Scholar 

  27. V. Evtuhov, A.E. Siegman, A twisted-mode technique for obtaining axially uniform energy density in a laser cavity. Appl. Opt. 4(1), 142–143 (1965)

    Article  ADS  Google Scholar 

  28. J. Noack, A. Vogel, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quant. Electron. 35(8), 1156–1167 (1999)

    Article  ADS  Google Scholar 

  29. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93(13), 137404 (2004)

    Article  ADS  Google Scholar 

  30. J. Peatross, S.A. Glasgow, M. Ware, Average energy flow of optical pulses in dispersive media. Phys. Rev. Lett. 84(11), 2370 (2000)

    Article  ADS  Google Scholar 

  31. P.K. Panigrahi, G.S. Agarwal, Existence of superposition solutions for pulse propagation in nonlinear resonant media. Phys. Rev. A 67(3), 033817 (2003)

    Article  ADS  Google Scholar 

  32. M. Verma, D. Singh, P.K. Panigrahi, A. Khare, Ultrashort pulse train in rare earth doped bimodal optical fiber. JOSA B 39(5), 1429–1437 (2022)

    Article  ADS  Google Scholar 

  33. A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hammad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammad, M., Tariq, M., Hamza, A. et al. Coherent manipulation of optical energy density of two-wave interference in atomic medium. J Opt 52, 612–618 (2023). https://doi.org/10.1007/s12596-022-01016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01016-6

Keywords

Navigation