Skip to main content
Log in

Form-preserving Darboux transformations for \(4\times 4\) Dirac equations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Darboux transformation is a powerful tool for the construction of new solvable models in quantum mechanics. In this article, we discuss its use in the context of physical systems described by \(4\times 4\) Dirac Hamiltonians. The general framework provides limited control over the resulting energy operator, so that it can fail to have the required physical interpretation. We show that this problem can be circumvented with the reducible Darboux transformation that can preserve the required form of physical interactions by construction. To demonstrate it explicitly, we focus on distortion scattering and spin-orbit interaction of Dirac fermions in graphene. We use the reducible Darboux transformation to construct exactly solvable models of these systems where backscattering is absent, i.e., the models are reflectionless.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. By \(2\times 2\) operator, we denote an operator acting on \({\mathbb {C}}^{2\times 2}\otimes {\mathcal {H}}\) where \({\mathcal {H}}\) is a Hilbert space.

  2. Strictly speaking, the intertwining operator should write \({\mathcal {L}}={\mathbb {I}}_{m\times m}\partial _{x}-U_{x}U^{-1}\) with \({\mathbb {I}}_{m\times m}\) the identity matrix of dimension m. Nevertheless, for simplicity, we dropout the identity matrix form the notation.

  3. This choice provides more compact formulas. It is also easier to discuss invertibility of the matrix U.

  4. This condition is sufficient but not necessary. Numerical analysis confirms that there is a wide range of parameters where the condition is not satisfied but \({\mathcal {D}}(x)\) is still node-less. A similar condition could be found for \(w<v\), \({\mathrm{Im}}\,a<0\) and \(\epsilon _1,\epsilon _2\in (w,v)\).

  5. \({\mathcal {L}}\) annihilates the two eigenstates from the interior of the energy band.

  6. It depends on the actual values of \(\epsilon _j\), \(j=1,2,3,4,\) see discussion below (62).

References

  1. P. Dirac, The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610 (1928)

    Article  ADS  MATH  Google Scholar 

  2. J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964)

    MATH  Google Scholar 

  3. W. Greiner, Relativistic Quantum Mechanics. Wave Equation, 3rd edn. (Springer-Verlag, Heidelberg, 2000)

    Book  MATH  Google Scholar 

  4. I. Bialynicky-Birula, On the wave function of the photon. Acta Phys. Pol. 86, 97 (1994)

    Article  ADS  Google Scholar 

  5. S.M. Barnett, Optical Dirac equation. New. J. Phys. 16, 093008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. S.A.R. Horsley, Topology and the Dirac equation. Phys. Rev. A 98, 043837 (2018)

    Article  ADS  Google Scholar 

  7. S. Longhi, Supersymmetric Bragg gratings. J. Opt. 17, 045803 (2015)

    Article  ADS  Google Scholar 

  8. F. Correa, V. Jakubský, Confluent Crum-Darboux transformations in Dirac Hamiltonians with PT-symmetric Bragg gratings. Phys. Rev. A 95, 033807 (2017)

    Article  ADS  Google Scholar 

  9. H. Koizumi, S. Sugano, The geometric phase in two electronic level systems. J. Chem. Phys. 101, 4903 (1994)

    Article  ADS  Google Scholar 

  10. L. Lu, J.D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photonics 8, 821 (2014)

    Article  ADS  Google Scholar 

  11. S. Longhi, Non-Hermitian topological phase transitions in superlattices and the optical Dirac equation. Opt. Lett. 46, 4470 (2021)

    Article  ADS  Google Scholar 

  12. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  13. E. McCann, V.I. Fal’ko, Landau-level degeneracy and quantum hall effect in a Graphite Bilayer. Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  14. E. McCann, M. Koshino, The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013)

    Article  ADS  Google Scholar 

  15. M. Castillo-Celeita, V. Jakubský, Reduction scheme for coupled Dirac systems, J. Phys. A 54, 455301 (2021)

  16. L.H. Haddad, L.D. Carr, Relativistic linear stability equations for the nonlinear Dirac equation in Bose-Einstein condensates. EPL 94, 56002 (2011)

    Article  ADS  Google Scholar 

  17. E. Sadurní, T. Seligman, F. Mortessagne, Playing relativistic billiards beyond graphene. New J. Phys. 12, 053014 (2010)

    Article  ADS  Google Scholar 

  18. J.A. Franco-Villafañe, E. Sadurní, S. Barkhofen, U. Kuhl, F. Mortessagne, T.H. Seligman, First experimental realization of the Dirac Oscillator. Phys. Rev. Lett. 111, 170405 (2013)

    Article  ADS  Google Scholar 

  19. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  20. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  21. G. Junker, Supersymmetric Dirac Hamiltonians in (1+1) dimensions revisited. Eur. Phys. J. Plus 135, 464 (2020)

    Article  Google Scholar 

  22. Ş Kuru, J. Negro, L.-M. Nieto, Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. J. Phys. Condens. Matter 21, 455305 (2009)

    Article  ADS  Google Scholar 

  23. A. Contreras-Astorga, Solutions of the Dirac equation in a magnetic field and intertwining operators. SIGMA 8, 082 (2012)

    MathSciNet  MATH  Google Scholar 

  24. A. Contreras-Astorga, A. Schulze-Halberg, The confluent supersymmetry algorithm for Dirac equations with pseudoscalar potentials. J. Math. Phys. 55, 103506 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. B. Midya, D.J. Fernández, Dirac electron in graphene under supersymmetry generated magnetic fields. J. Phys. A 47, 285302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ö. Yeşiltaş, Supersymmetric analysis of the Dirac–Weyl operator within PT symmetry. J. Math. Phys. 55, 082106 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. M. Castillo-Celeita, D.J. Fernández, Dirac electron in graphene with magnetic fields arising from first-order intertwining operators. J. Phys. A 53, 035302 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.J. Fernández, J.D. García, D. O-Campa, Bilayer graphene in magnetic fields generated by supersymmetry. J. Phys. A 54, 245302 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. L.-M. Nieto, A.A. Pecheritsin, B.F. Samsonov, Intertwining technique for the one-dimensional stationary Dirac equation. Ann. Phys. 305, 151 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A.A. Pecheritsyn, E.O. Pozdeeva, B.F. Samsonov, Darboux transformation of the nonstationary Dirac equation. Russ. Phys. J. 48, 365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Pozdeeva, A. Schulze-Halberg, Darboux transformations for a generalized Dirac equation in two dimensions. J. Math. Phys. 51, 113501 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. Schulze-Halberg, A. Ishkhanyan, Darboux partners of Heun-class potentials for the two-dimensional massless Dirac equation. Ann. Phys. 421, 168273 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Jakubský, L.-M. Nieto, M.S. Plyushchay, Klein tunneling in carbon nanostructures: a free-particle dynamics in disguise. Phys. Rev. D 83, 047702 (2011)

    Article  ADS  Google Scholar 

  34. V. Jakubský, M.S. Plyushchay, Supersymmetric twisting of carbon nanotubes. Phys. Rev. D 85, 045035 (2012)

    Article  ADS  Google Scholar 

  35. F. Correa, V. Jakubský, Twisted kinks, Dirac transparent systems and Darboux transformations. Phys. Rev. D 90, 125003 (2014)

    Article  ADS  Google Scholar 

  36. N. Chandra, N.M. Litchinitser, Photonic bandgap engineering using second-order supersymmetry. Commun. Phys. 4, 59 (2021)

    Article  Google Scholar 

  37. A. Altland, Low-energy theory of disordered graphene. Phys. Rev. Lett. 97, 236802 (2006)

    Article  ADS  Google Scholar 

  38. E. McCann, K. Kechedzhi, V.I. Fal’Ko, H. Suzuura, T. Ando, B.L. Altshuler, Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006)

    Article  ADS  Google Scholar 

  39. J.L. Mañes, F. Guinea, M.A.H. Vozmediano, Existence and topological stability of Fermi points in multilayered graphene. Phys. Rev. B 75, 155424 (2007)

    Article  ADS  Google Scholar 

  40. A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B.J. van Wees, I.J. Vera-Marun, Colloquium: spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 92, 021003 (2020)

    Article  ADS  Google Scholar 

  41. C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  42. D. Huertas-Hernando, F. Guinea, A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74, 155426 (2006)

    Article  ADS  Google Scholar 

  43. E. Díaz-Bautista, D.J. Fernández, Graphene coherent states. Eur. Phys. J. Plus 132, 499 (2017)

    Article  MATH  Google Scholar 

  44. David J. Fernández, D.I. Martíez-Moreno, Bilayer graphene coherent states. Eur. Phys. J. Plus 135, 739 (2020)

    Article  Google Scholar 

  45. A. Schulze-Halberg, M. Ojel, Darboux transformations for the massless Dirac equation with matrix potential: construction of zero-energy states. Eur. Phys. J. Plus 134, 49 (2019)

    Article  Google Scholar 

  46. V. Jakubský, M. Tušek, Dispersionless wave packets in Dirac materials. Ann. Phys. 378, 171 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Marie Fialová, Vít. Jakubský, Matěj Tušek, Qualitative analysis of magnetic waveguides for two-dimensional Dirac fermions. Ann. Phys. 395, 219–237 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. P. Ghosh, P. Roy, Bound states in graphene via Fermi velocity modulation. Eur. Phys. J. Plus 132, 32 (2017)

    Article  Google Scholar 

  49. T. Ando, Impurity scattering in carbon nanotubes—Absence of back scattering. J. Phys. Soc. Jap. 67, 1704 (1998)

    Article  ADS  Google Scholar 

  50. F.M. Fernández, Introduction to Perturbation Theory in Quantum Mechanics (CRC Press, Boca Raton, 2000)

    Book  Google Scholar 

  51. W. Greiner, Quantum Mechanics, An Introduction, 4th edn. (Springer-Verlag, Berlin, 2001)

    MATH  Google Scholar 

  52. M. Reed, B. Simon, Methods of Modern Mathematical Physics (New York, IV, Analysis of Operators (Academic, 1978)

Download references

Acknowledgements

M.C.-C. thanks Department of Physics of the Nuclear Physics Institute of CAS for hospitality. M.C.-C. acknowledges the support of CONACYT, project FORDECYT-PRONACES/61533/2020. V.J. was supported by GACR grant no 19-07117S. K.Z. acknowledges the support from the project “Physicists on the move II” (KINEÓ II), Czech Republic, Grant No. CZ.02.2.69/0.0/0.0/18 053/0017163. The authors would like to thank the anonymous referee for constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zelaya.

Appendix

Appendix

We shall find asymptotic form of the matrix \(U_xU^{-1}\), where U is given in (54). We have

$$\begin{aligned} (\partial _xU)U^{-1}=\frac{1}{{\mathcal {D}}(x)}\left( \begin{array}{ll} f_{11} &{} f_{12} \\ f_{21} &{} f_{22} \end{array}\right) , \end{aligned}$$
(A-1)

where the matrix elements and the denominator are as follows:

$$\begin{aligned} f_{11}= & {} ic_1+c_2\tanh (z_1)-i\,a^*\,\kappa _{\epsilon _2}(\text {Im}\,a+\kappa _{\epsilon _1}\tanh (z_1))\tanh ({z}_2), \end{aligned}$$
(A-2)
$$\begin{aligned} f_{22}= & {} i{\widetilde{c}}_1+{\widetilde{c}}_2\tanh ({z}_2)+i\,a\,\kappa _{\epsilon _1}(\text {Im}\,a-\kappa _{\epsilon _2}\tanh ({z}_2))\tanh (z_1), \end{aligned}$$
(A-3)
$$\begin{aligned} f_{12}= & {} i (w-\epsilon _1) (\kappa _{\epsilon _2}^2+\text {Im}\,a\, \kappa _{\epsilon _1} \tanh (z_1)-\kappa _{\epsilon _2} (\text {Im}\,a+\kappa _{\epsilon _1} \tanh (z_1))\tanh ({z}_2)), \end{aligned}$$
(A-4)
$$\begin{aligned} f_{21}= & {} i (v-\epsilon _2) (\kappa _{\epsilon _1}^2+ \text {Im}\,a\,\kappa _{\epsilon _1}\tanh (z_1)-\kappa _{\epsilon _2}(\text {Im}\,a+\kappa _{\epsilon _1} \tanh (z_1)) \tanh ({z}_2)). \end{aligned}$$
(A-5)

and \({\mathcal {D}}(x)\) is given in (57). For the sake of completeness, we put the formula here again

$$\begin{aligned} {\mathcal {D}}(x)=(v-\epsilon _{2})(w-\epsilon _{1})+\left( \kappa _{\epsilon _{1}}\tanh (z_{1})+{\mathrm{Im}}\,a\right) \left( \kappa _{\epsilon _{2}}\tanh ({z}_{2})-{\mathrm{Im}}\,a\right) . \end{aligned}$$
(A-6)

The \(c_1\) and \(c_2\) constants are given as

$$\begin{aligned} c_1= & {} \text {Im}\,a^2\text {Re}\,a-i\text {Im}\,a\kappa _{\epsilon _2}^2-\text {Re}\,a(w-\epsilon _1)(v-\epsilon _2), \end{aligned}$$
(A-7)
$$\begin{aligned} c_2= & {} i\text {Im}\,a\text {Re}\,a+\kappa _{\epsilon _2}^2+(w-\epsilon _1)(v-\epsilon _2),\nonumber \\ {\widetilde{c}}_1= & {} c_1^*|_{\kappa _{\epsilon _2}\rightarrow \kappa _{\epsilon _1}},\quad {\widetilde{c}}_2=c_2^*|_{\kappa _{\epsilon _2}\rightarrow \kappa _{\epsilon _1}}. \end{aligned}$$
(A-8)

Now, we calculate the limit \(x\rightarrow {{{\pm }}}\infty \) of the matrix \((\partial _xU)U^{-1}\),

$$\begin{aligned} \begin{aligned}&w_{{{\pm }}}=\lim _{x\rightarrow {{\pm }}\infty } (\partial _xU)U^{-1}\\&\quad =\frac{1}{{\mathcal {D}}^{{\pm }}}\left( \begin{array}{cc} ic_1{{\pm }} c_2\mp i\,a^*\kappa _{\epsilon _2}(\text {Im}\,a{{\pm }}\kappa _{\epsilon _1}) &{} i (w-\epsilon _1) (\kappa _{\epsilon _2}^2{{\pm }}\text {Im}\,a \kappa _{\epsilon _1} \mp \kappa _{\epsilon _2} (\text {Im}\,a{{\pm }}\kappa _{\epsilon _1})) \\ i (v-\epsilon _2) (\kappa _{\epsilon _1}^2{{\pm }} \text {Im}\,a\kappa _{\epsilon _1}\mp \kappa _{\epsilon _2}(\text {Im}\,a{{\pm }}\kappa _{\epsilon _1})) &{} i{\widetilde{c}}_1{{\pm }}{\widetilde{c}}_2{{\pm }} i\,a\,\kappa _{\epsilon _1}(\text {Im}\,a\mp \kappa _{\epsilon _2}) \end{array}\right) , \end{aligned}\nonumber \\ \end{aligned}$$
(A-9)

where

$$\begin{aligned} {\mathcal {D}}^{{\pm }}=-\text {Im}{a}^2{{\pm }}\kappa _{\epsilon _2}(\text {Im}\,a{{\pm }}\kappa _{\epsilon _1} )\mp \text {Im}\,a \kappa _{\epsilon _1}+(v-\epsilon _2) (w-\epsilon _1). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo-Celeita, M., Jakubský, V. & Zelaya, K. Form-preserving Darboux transformations for \(4\times 4\) Dirac equations. Eur. Phys. J. Plus 137, 389 (2022). https://doi.org/10.1140/epjp/s13360-022-02611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02611-z

Navigation