Skip to main content
Log in

Weyl–Dirac Equation in Fractional-Dimensional Space: Graphene

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, we have treated exact analytical the two-dimensional massless Dirac–Weyl equation under the effect of a uniform electromagnetic field within a fractional-dimensional space, in which the momentum and position operators satisfying the R-deformed Heisenberg algebras. The expressions of the energy eigenvalues and the corresponding eigenfunctions are exactly calculated. The graphene free case is also exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ma, Rev. Mod. Phys. 45, 589 (1973)

    Article  ADS  Google Scholar 

  2. B.B. Mandelbrot, Math. Phys. Sci. 423, 3 (1989)

    Google Scholar 

  3. X.F. He, Phys. Rev. B 43, 2063 (1991)

    Article  ADS  Google Scholar 

  4. H. Mathieu, P. Lefebvre, P. Christol, Phys. Rev. B 46, 4092 (1992)

    Article  ADS  Google Scholar 

  5. A. Matos-Abiague, L.E. Oliveira, M. de Dios-Leyva, Phys. Rev. B 58, 4072 (1998)

    Article  ADS  Google Scholar 

  6. Z. Wang, B. Lu, Waves Random Complex Media 4, 97 (1994)

    Article  ADS  Google Scholar 

  7. A. Naqvi, S. Ahmed, Q.A. Naqvi, J. Electromagn. Waves Appl. 24, 1991 (2010)

    Article  ADS  Google Scholar 

  8. M. Zubair, MJ. Mughal, QA. Naqvi. Springer (2012)

  9. V.E. Tarasov, Phys. Lett. A 379, 2055 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.A. El-Nabulsi, Few Body Syst. 61, 10 (2020)

    Article  ADS  Google Scholar 

  11. N. Bouzid, M. Merad, Few Body Syst. 58, 131 (2017)

    Article  ADS  Google Scholar 

  12. H. Merad, F. Merghadi, A. Merad, Int. J. Mod Phys. A 36, 33 (2021)

    Article  Google Scholar 

  13. G. Leibbrandt, Rev. Mod. Phys. 47, 849 (1975)

    Article  ADS  Google Scholar 

  14. K. Oldham, J. Spanier. Academic Press, New York (1974)

  15. F.H. Stillinger, J. Math. Phys. 18, 1224 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  16. X.F. He, Solid State Commun. 75, 111 (1990)

    Article  ADS  Google Scholar 

  17. X.F. He, Phys. Rev. B 75, 111 (1990)

    Google Scholar 

  18. C. Palmer, P.N. Stavrinou, J. Phys. A 37, 6987 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. V.E. Tarasov, Chaos Interdiscip. J. Nonlinear Sci. 14, 123 (2004)

    Article  Google Scholar 

  20. V.E. Tarasov, Phys. Rev. E 71, 011102 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y. Ohnuki, S. Kamefuchi. University of Tokyo Press 14, 503 (1982)

  22. Y. Ohnuki, S. Kamefuchi, J. Math. Phys. 19, 67 (1978)

    Article  ADS  Google Scholar 

  23. A. Matos-Abiague, Phys. Scr. 62, 106 (2000)

    Article  ADS  Google Scholar 

  24. A. Matos-Abiague, J. Phys. A: Math. Gen. 34, 3125 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Matos-Abiague, J. Phys. A: Math. Gen. 34, 11059 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.A. Lohe, A. Thilagam, J. Phys. A: Math. Gen. 37, 6181 (2004)

    Article  ADS  Google Scholar 

  27. M.A. Lohe, Rep. Math. Phys. 57, 131 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.F. Dunkle, Trans. Am. Math. Soc. 311, 167 (1989)

    Article  Google Scholar 

  29. C. Jang, D.R. Hines, M.S. Fuhrer, E.D. Williams, Adv. Mater. 19, 3623 (2007)

    Article  Google Scholar 

  30. A. Jorio. Springer (2016)

  31. X. Wang, X. Gan, Chin. Phys. B 26, 034203 (2017)

    Article  ADS  Google Scholar 

  32. L.A. Elshina, R.V. Muradymov, A.G. Kvashnichev, D.I. Vichuzhanin, N.G. Molchanova, A.A. Pankratov, Russ. Metall. 2017, 631 (2017)

    Article  ADS  Google Scholar 

  33. T. Mahmoudi, Y. Wang, Y.B. Hahn, Nano Energy 47, 51 (2018)

    Article  Google Scholar 

  34. K. Chen, Q. Wang, Z. Niu, J. Chen, J. Energy Chem. 27, 12 (2018)

    Article  Google Scholar 

  35. A. Beltaos, A.J. Bergren, K. Bosnick, N. Pekas, S. Lane, K. Cui, A. Matković, A. Meldrum, Nano Futur. 1, 025004 (2017)

    Article  ADS  Google Scholar 

  36. C. Bastos, Int. J. Mod. Phys. A 28, 1350064 (2013)

    Article  ADS  Google Scholar 

  37. L. Sourrouille, Int. J. Mod. Phys. A 36, 2150087 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  38. W. de Paula, A.J. Chaves, O. Oliveira, T. Frederico, Few Body Syst. 56, 915 (2015)

    Article  ADS  Google Scholar 

  39. A. Iorio, P. Pais, IOP Conf. Ser. J. Phys. 1275, 012061 (2019)

    Article  Google Scholar 

  40. M. Hosseini, H. Hassanabadi, S. Hassanabadi, Eur. Phys. J. Plus 134, 1 (2019)

    Article  Google Scholar 

  41. J.C. Flores, L. Palma-Chilla, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  42. A.C. Balram, C. Toke, A. Wojs, J.K. Jain, Phys. Rev. B 92, 075410 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadjer Merad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merad, H. Weyl–Dirac Equation in Fractional-Dimensional Space: Graphene. Few-Body Syst 63, 66 (2022). https://doi.org/10.1007/s00601-022-01771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01771-z

Navigation