Skip to main content
Log in

Rashba contribution of 2D Dirac–Weyl fermions: beyond ordinary quantum regime

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the energy levels of Dirac–Weyl fermions in graphene subject to a magnetic field with Rashba contribution in the minimal length situation. The exact solution for the energy dispersion of Dirac-like charge carriers coupled to the magnetic moments in a (2+1)-dimension is obtained by the use of the momentum space representation. Moreover, as it comes to applications for 2D Dirac-like quasiparticles, we also extend our theory and results in some special cases, showing that the emerging energy spectrum at the high magnetic field limit becomes independent of the Rashba coupling, \(\lambda _{R}\), and the band index of Landau levels.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available on request from the corresponding author].

References

  1. G. Mandanici, Wave propagation and IR/UV mixing in noncommutative spacetimes (2003), Preprint at arXiv:hep-th/0312328

  2. S. Vaidya, B. Ydri, Nucl. Phys. B 671, 401 (2003)

    Article  ADS  Google Scholar 

  3. H. Grosse, H. Steinacker, M. Wohlgenannt, JHEP 04, 023 (2008)

    Article  ADS  Google Scholar 

  4. E. López, JHEP 09, 033 (2003)

    Article  ADS  Google Scholar 

  5. S. Das, E.C. Vagenas, A.F. Ali, Phys. Lett. B 690, 407 (2010)

    Article  ADS  Google Scholar 

  6. A.N. Tawfik, A.M. Diab, Rep. Prog. Phys. 78, 126001 (2015)

    Article  ADS  Google Scholar 

  7. M. Maggiore, Phys. Lett. B 304, 65 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kh. Nouicer, J. Phys. A: Math. Gen. 38, 10027 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. O. Akhavan, Acta Sci. Appl. Phys. 2, 34 (2022)

    Google Scholar 

  10. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. T.V. Fityo, I.O. Vakarchuk, V.M. Tkachuk, J. Phys. A: Math. Gen. 39, 2143 (2006)

    Article  ADS  Google Scholar 

  12. S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  13. A.F. Ali, S. Das, E.C. Vagenas, Phys. Lett. B 678, 497 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Das, E.C. Vagenas, A.F. Ali, Phys. Lett. B 690, 407 (2010)

    Article  ADS  Google Scholar 

  15. A.F. Ali, S. Das, E.C. Vagenas, Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  16. A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, Nat. Mater. 14, 871 (2015)

    Article  ADS  Google Scholar 

  17. C. Tahan, R. Joynt, Phys. Rev. B 71, 075315 (2005)

    Article  ADS  Google Scholar 

  18. G. Lévai, J. Phys. A: Math. Gen. 39, 10161 (2006)

    Article  ADS  Google Scholar 

  19. M.F. Gusson, A. Oakes, O. Gonçalves, R.O. Francisco, R.G. Furtado, J.C. Fabris, J.A. Nogueira, Eur. Phys. J. C 78, 179 (2018)

    Article  ADS  Google Scholar 

  20. L. Menculini, O. Panella, P. Roy, Phys. Rev. D 87, 065017 (2013)

    Article  ADS  Google Scholar 

  21. P. Kurian, C. Verzegnassi, Phys. Lett. A 380, 394 (2016)

    Article  ADS  Google Scholar 

  22. Yu.G. Semenov, K.W. Kim, Phys. Rev. B 67, 073301 (2003)

    Article  ADS  Google Scholar 

  23. L.W. Molenkamp, G. Schmidt, G.E.W. Bauer, Phys. Rev. B 64, 121202(R) (2001)

    Article  ADS  Google Scholar 

  24. D.L. Campbell, G. Juzeliunas, I.B. Spielman, Phys. Rev. A 84, 025602 (2011)

    Article  ADS  Google Scholar 

  25. A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010)

    Article  ADS  Google Scholar 

  26. Q. Sun, J. Wang, H. Guo, Phys. Rev. B 71, 165310 (2005)

    Article  ADS  Google Scholar 

  27. M.S. Ma, R. Zhao, J. Math. Phys. 55, 082109 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Bargueño, E.C. Vagenas, Phys. Lett. B 742, 15 (2015)

    Article  ADS  Google Scholar 

  29. A.N. Tawfik, E.A. El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015)

    Article  ADS  Google Scholar 

  30. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  31. Y. Zhang, Y.-W. Tan, H.L. Störmer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  32. S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)

  33. Z. Qiao, H. Jiang, X. Li, Y. Yao, Q. Niu, Phys. Rev. B 85, 115439 (2012)

    Article  ADS  Google Scholar 

  34. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  35. H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)

    Article  ADS  Google Scholar 

  36. R. Houça, A. Jellal, Phys. Scr. 94, 105707 (2019)

    Article  ADS  Google Scholar 

  37. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First, J.A. Stroscio, Science 324(5929), 924 (2009)

    Article  ADS  Google Scholar 

  38. Y.J. Song, A.F. Otte, Y. Kuk, Y. Hu, D.B. Torrance, P.N. First, W.A. de Heer, H. Min, S. Adam, M.D. Stiles, A.H. MacDonald, J.A. Stroscio, Nature 467(7312), 185 (2010)

    Article  ADS  Google Scholar 

  39. G. Li, A. Luican, E.Y. Andrei, Phys. Rev. Lett. 102(17), 176804 (2009)

    Article  ADS  Google Scholar 

  40. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  41. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.-J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Phys. Rev. Lett. 98, 197403 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jellal, A., Jahani, D. & Akhavan, O. Rashba contribution of 2D Dirac–Weyl fermions: beyond ordinary quantum regime. Eur. Phys. J. B 96, 18 (2023). https://doi.org/10.1140/epjb/s10051-023-00480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00480-8

Navigation