Skip to main content
Log in

Preliminary investigation of the multivariate relations between program-selected forbush decreases, worldwide lightning frequency, sunspot number and other solar-terrestrial drivers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Solar wind disturbances such as coronal mass ejections and their interplanetary counterparts and corotating interaction regions are interconnected with solar-terrestrial parameters such as cosmic rays, solar wind, geomagnetic storm, lightning, interplanetary magnetic field, among others. Data selection remains a challenging problem in solar-terrestrial studies. While manual selection of Forbush decreases (FDs) is subjective, automated methods are not widely used within the field. We demonstrate that Forbush events algorithm selection technique is an improvement over the common but inefficient manual method. Additionally, a simple coincident computer program was used to select other solar-terrestrial variables using the FD date as the input data. We used models/tools capable of handling simultaneous multidimensional variables to study the complex interrelationships within the Sun–Earth space. Forbush effects (FEs) selected by the IZMIRAN group was used to validate our results. Fourier transform technique and an R-based algorithm were used to identify FDs from Sanae neutron monitor data. In order to select other solar/geophysical variables, the program-selected FD dates were used as input data for the coincident algorithm. The large number of variables selected were analyzed using principal component analysis and multiple regression models. Several analyses showed that variability in solar-terrestrial parameters happens simultaneously with FDs. We conclude that data fluctuations within the Sun–Earth region might be induced simultaneously by common solar events and should be investigated using multidimensional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: Data associated with the present work can be found at http://cr0.izmiran.rssi.ru/, https://omniweb.gsfc.nasa.gov/form/dx1.html, and http://spaceweather.izmiran.ru/eng/fds2003.html. Global lightning data from the worldwide lightning location network (WWLLN) are available upon request by contacting giftedlife2014@gmail.com.]

References

  1. J.A. Alhassan, O. Okike, A.E. Chukwude, RAA (2021). https://doi.org/10.1088/1674-4527/21/11/273

    Article  Google Scholar 

  2. J.A. Alhassan, O. Okike, A.E. Chukwude, RAA (2021). https://doi.org/10.1088/1674-4527/21/9/234

    Article  Google Scholar 

  3. J.A. Alhassan, O. Okike, A.E. Chukwude, J. Astrophys. Astr. 43(6), (2022). https://doi.org/10.1007/s12036-021-09790-8

  4. K.P. Arunbabu, H.M. Antia, S.R. Dugad, S.K. Kupta, Y. Hayashi, S. Kawakami, P.K. Mohanty, A. Oshima, P. Subramanian, Astron. Astrophy. 580(A41), 1 (2015). https://doi.org/10.1051/0004-6361/201425115

    Article  Google Scholar 

  5. O.P.M. Aslam, Baduddin: Solar Phys. 279, 269 (2012). https://doi.org/10.1007/s11207-012-9970-3

    Article  ADS  Google Scholar 

  6. H. Atmanspacher, B.L. Lambert, G. Folkers, P.A. Schubiger, Planet. Space Sci. 11, 1 (2014)

    Google Scholar 

  7. K. A. Badruddin: Solar Phys. (2015). https://doi.org/10.1007/s11207-015-0665-4

  8. B. Badruddin, O.P.M. Aslam, M. Derouich, Astrophysics and SPace. Science (2022). https://doi.org/10.1007/s10509-021-04030-5

    Article  Google Scholar 

  9. Baduddin, K. A. Solar Phys. (2015)

  10. E. Barouch, L.F. Burlaga, J. Geophys. Res. 80, 449 (1975). https://doi.org/10.1029/JA080i004p00449

    Article  ADS  Google Scholar 

  11. A.V. Belov, Proceedings IAU Symposium, 257, (2009). https://doi.org/10.1017/S1743921309029676

  12. A.V. Belov, E.A. Eroshenko, V.A. Oleneva, A.B. Struminsky, V.G. Yanke, Adv. Space Res. 27(3), 625 (2001)

    Article  ADS  Google Scholar 

  13. A.V. Belov, L. Baisultanova, E. Eroshenko, et al. J. Geophys. Res. 110, (2005)

  14. A.V. Belov, E.A. Eroshenko, V.G. Yanke, V.A. Oleneva, M.A. Abunina, A.A. Abunin, Geomag. Aeron. 58(3), 356 (2018)

    Article  Google Scholar 

  15. A. Belov, A. Abunin, M. Abunina, E. Eroshenko, V. Oleneva, V. Yanke, A. Papaioannuou, H. Maromichalaki, N. Gopalswamy, S. Yashiro, Solar Phys. (2014). https://doi.org/10.1007/s11207-014-0534-6

    Article  Google Scholar 

  16. A. Bhaskar, G. Vichare, K.P. Arunbabu, A. Raghav, Astrophys Space Sci. (2016). https://doi.org/10.1007/s10509-016-2827-8

    Article  Google Scholar 

  17. B. Bhaskar, P. Subramanian, G. Vichare, Astrophys. J. 828, 104 (2016). https://doi.org/10.3847/0004-637X/828/2/104

    Article  ADS  Google Scholar 

  18. H.V. Cane, Space Sci. Rev. 93, 55 (2000)

    Article  ADS  Google Scholar 

  19. H.V. Cane, I.G. Richardson, J. Geophys. Res. 108(A4, 1156), 1 (2003). https://doi.org/10.1029/2002JA009817

    Article  Google Scholar 

  20. H.V. Cane, I.G. Richardson, T.T. von Rosenvinge, J. Geophys. Res. 98(A8), 13295 (1993). https://doi.org/10.1029/93JA00955

    Article  ADS  Google Scholar 

  21. H.V. Cane, I.G. Richardson, T.T. von Rosenvinge, J. Geophys. Res. 101(A10), 21561 (1996). https://doi.org/10.1029/96JA01964

    Article  ADS  Google Scholar 

  22. C. Chree, Phil. Trans. Roy. Soc. London Ser. A. 212, (1912). https://doi.org/10.1098/rsta.1913.0003

  23. C. Chree, Phil. Trans. Roy. Soc. London Ser. A 213, (1913)

  24. T.G. Chronis, J. Climate 22, 5748 (2009)

    Article  ADS  Google Scholar 

  25. A. Dragic, I. Anicin, R. Banjanac, V. Udovicic, D. Jokovic, D. Maletic, J. Puzovic, Astrophys. Space Sci. Trans. 7, 315 (2011). https://doi.org/10.5194/astra-7-315-2011

    Article  ADS  Google Scholar 

  26. M. Dumbovic, B. Vrsnak, J. Calogovic, M. Karlica, Astron. Astrophy. 531(A91), 1 (2011)

    Google Scholar 

  27. M. Dumbovic, B. Vrsnak, J. Calogovic, R. Zupan, Astron. Astrophy. 538(A28), 199 (2012). https://doi.org/10.1051/0004-6361/201117710

    Article  Google Scholar 

  28. A.C. Fraser-Smith, Technical Report No. 1(2), 1 (1971)

    Google Scholar 

  29. R. Harrison, M. Ambaum, J. Atmos. Sol. Terr. Phys. 1408, 2010 (2010). https://doi.org/10.1016/j.jastp.2010.09.025

    Article  Google Scholar 

  30. W. Herschel, Philos. Trans. R. Soc. Lond 91, 265 (1801)

    ADS  Google Scholar 

  31. R.P. Kane, Ann. Geophys. 28, 479 (2010). https://doi.org/10.5194/angeo-28-479-2010

    Article  ADS  Google Scholar 

  32. J.W. King, Astronaut. Aeronau 13, 10 (1975)

    Google Scholar 

  33. J.E. Kristjansson, C.W. Stjern, F. Stordal, A.M. Fjaraa, G. Myrhre, K. Jonasson, Atmos. Chem. Phys. Discuss. 8, 13265 (2008). https://doi.org/10.5194/acp-8-7373-2008

    Article  ADS  Google Scholar 

  34. B.A. Laken, J. Calogovic, J. Space Weather Space Clim. (2013). https://doi.org/10.1051/swsc/2013051

    Article  Google Scholar 

  35. B.A. Laken, D.R. Kniveton, J. Atmos. Solar Terr. Phys. 73, 371 (2011)

    Article  ADS  Google Scholar 

  36. B.A. Laken, E. Palle, J. Calogovic, E.M. Dunne, J. Space Weather Space Clim. (2012). https://doi.org/10.1051/swsc/2012018

    Article  Google Scholar 

  37. C. Light, V. Bindi, C. Consolandi, C. Corti, C. Freeman, A. Kuhlman, M. Palermo, S. Wand, ApJ. 133(8), (2020)

  38. D. Lingri, H. Mavromichalaki, A. Belov, E. Eroshenko, V.G. Yanke, A. Abunin, M. Abunina, Solar Phys. (2016). https://doi.org/10.1007/s11207-016-0863-8

    Article  Google Scholar 

  39. J.A. Lockwood, Space Sci. Rev. 12, 658 (1971)

    Article  ADS  Google Scholar 

  40. F. Marcz, J. Atmos. Solar-Terr. Phys. 59(9), 957 (1997)

    Article  Google Scholar 

  41. A.S. Monin, MIT Press (Mass, Cambridge, 1972)

    Google Scholar 

  42. S.Y. Oh, Y. Yi, H.Y. Kim, J. Geophys. Res. (2008). https://doi.org/10.1029/2007JA012333

    Article  Google Scholar 

  43. O. Okike, ApJ 882(15), 1 (2019). https://doi.org/10.3847/1538-4357/ab32db

  44. O. Okike, J. Geophys. Res. (Space Phys.) 124, 1 (2019). https://doi.org/10.1029/2018JA026456

    Article  Google Scholar 

  45. O. Okike, J. Atmos. Solar-Terr. Phys. (2020). https://doi.org/10.1016/j.jastp.2020.105460

    Article  Google Scholar 

  46. O. Okike, Data in Brief (2020). https://doi.org/10.1016/j.dib.2020.106463

    Article  Google Scholar 

  47. O. Okike, Mon. Not. Roy. Astron. Soc. 491, 3793 (2020). https://doi.org/10.1093/mnras/stz3123

    Article  ADS  Google Scholar 

  48. O. Okike, ApJ. 60, (2021). https://doi.org/10.3847/1538-4357/abfe60

  49. O. Okike, J.A. Alhassan, Solar Phys. 296, (2021). https://doi.org/10.1007/s11207-021-01855-9

  50. O. Okike, A.B. Collier, J. Atmos. Solar-Terr. Phys. 73, 796 (2011). https://doi.org/10.1016/j.jastp.2011.01.015

    Article  ADS  Google Scholar 

  51. O. Okike,, A.B. Collier, General Assembly and Scientific Symposium, 2011 XXXth URSI IEEE, 1 (2011)

  52. O. Okike, O.C. Nwuzor, Mon. Not. Roy. Astron. Soc. 493(2), 1948 (2020). https://doi.org/10.1093/mnras/staa370

    Article  ADS  Google Scholar 

  53. O. Okike, A.E. Umahi, J. Atmos. Solar-Terr. Phys. 189, 35 (2019). https://doi.org/10.1016/j.jastp.2019.04.002

    Article  ADS  Google Scholar 

  54. O. Okike, A.E. Umahi, Solar Phys. (2019). https://doi.org/10.1007/s11207-019-1405-y

    Article  Google Scholar 

  55. O. Okike, J.A. Alhassan, E.U. Iyida, A.E. Chukwude, MNRAS 503, 5675 (2021)

    Article  ADS  Google Scholar 

  56. O. Okike, O.C. Nwuzor, F.C. Odo, E.U. Iyida, J.E. Ekpe, A.E. Chukwude, MNRAS (2021). https://doi.org/10.1093/mnras/staa4002

    Article  Google Scholar 

  57. J. Oloketuyi, Y. Liu, A.C. Amanambu, M. Zhao, Adv. Astron. (2020). https://doi.org/10.1155/2020/3527570

    Article  Google Scholar 

  58. M.J. Owens, C. Scott, M. Lockwood, L. Barnard, R. Harrison, K. Nicoll, C. Watt, A. Bennet, Environ. Res. Lett. 9(11), 115009 (2014)

    Article  ADS  Google Scholar 

  59. M.J. Owens, C.J. Scot, A.J. Bennet, S.R. Thomas, M. Lockwood, R.G. Harrison, M.M. Lam, Geophys. Res. Lett., 9624 (2015)

  60. A. Papaioannou, O. Malandraki, A. Belov, R. Skoug, H. Mavromickalaki, E. Eronshenko, E. Abaunin, S. Lepri, Solar Phys. (2010). https://doi.org/10.1007/s11207-010-9601-9

    Article  Google Scholar 

  61. A. Papaioannou, A. Anastasiadis, A. Kouloumvakos, M. Paassilta, R. Vainio, E. Valtonen, A. Belov, E. Eronshenko, M. Abunina, A. Abunin, Solar Phys. 293(100), (2018)

  62. K.K. Parashar, B.S. Rathore, P.K. Kaushik, D.C. Gupta, Int. J. Pure Appl. Phys. 7(3), 199 (2011)

    Google Scholar 

  63. A.B. Pittocks, Rev. Geophys. Space Phys. 16(3), 400 (1978). https://doi.org/10.1029/RG016i003p00400

    Article  ADS  Google Scholar 

  64. H.E. Plesser, Frontiers in Neutoinformatics. 11(76), (2018)

  65. M.A. Pomerantz, P.S. Duggal, Space Sci. Rev. 12, 75 (1971)

    Article  ADS  Google Scholar 

  66. L. Prasad, S. Garia, B. Bhatt, Int. J. Phys. Appl. 5(2), 77 (2013)

    Google Scholar 

  67. M.I. Pudovkin, S.V. Veretenenko, J. Atmos. Solar-Terr. Phys. 57(11), 1349 (1995). https://doi.org/10.1016/0021-9169(94)00109-2

    Article  ADS  Google Scholar 

  68. R Core Team: R Foundation for Statistical Computing (2014)

  69. O.O.U. Ramirez, J.F.V. Galicia, G. Munoz, E. Huttunen, 33rd Internation cosmic ray conference , Rio de Janeiro (2013)

  70. I. Richardson, H. Cane, Solar Phys. 264(189), (2010)

  71. C.J. Scott, R.G. Harrison, M.J. Owens, M. Lockwood, L. Barnard, Environ. Res. Lett. 9(055004), (2014)

  72. D. Siingh, P.R. Kumar, M.N. Kulkarni, R.P. Siingh, A.K. Siingh, Atmospheric Res. 120, (2013). https://doi.org/10.1016/j.atmosres.2012.07.026

  73. Y.P. Singh, Badruddin. J. Geophys. Res. 112(A05101), 581 (2007). https://doi.org/10.1029/2006JA011779

    Article  Google Scholar 

  74. O.C. St. Cyr, S. Yashiro, N. Gopalswamy, G. Michalek, S. P. Plunkett, N.B. Rich, R.A. Howard, J. Geophys. Res. 18(185) (2004)

  75. H. Svensmark, E. Friis-Christensen, J. Atmos. Solar Terr. Phys. 59, 1225 (1997)

    Article  ADS  Google Scholar 

  76. H. Svensmark, T. Bondo, D.R. Kniveton, Atmos. Chem. Phys. Discuss. 9, 10575 (2009)

    Google Scholar 

  77. H. Svensmark, T. Bondo, J. Svensmark, Geophys. Res. Letters. 36(L15101), (2009). https://doi.org/10.1029/2009GL038429

  78. J. Svensmark, M.B. Enghoff, H. Svensmark, Atmos. Chem. Phys. Discuss. 12, 3595 (2012). https://doi.org/10.5194/acpd-12-3595-2012

    Article  ADS  Google Scholar 

  79. J. Svensmark, M.B. Enghoff, N.J. Shaviv, H. Svensmark, J. Geophys. Res. (Space Phys.) 121, 8152 (2016). https://doi.org/10.1002/2016JA022689

    Article  ADS  Google Scholar 

  80. M.C. Todd, D.R. Kniveton, J. Geophys. Res. 106, 32031 (2001)

    Article  ADS  Google Scholar 

  81. D.F. Webb, T.A. Howard, Living Rev. Solar Phys. 9(3), (2012)

  82. J.M. Wilcox, P.H. Scherrer, L. Svalgaard, W.O. Roberts, H.R. Olson, R.L. Jenne, J. Atmos. Sci. 31, 581 (1974)

    Article  ADS  Google Scholar 

  83. M.L. Winter, K. Ledbetter, ApJ. 809(105), (2015)

  84. S. Yashiro, N. Gopalswamy, G. Michalek, O.C. St. Cyr, S.P. Plunkett, N.B. Rich, R.A. Howard, J. Geophys. Res. 109(A07105), (2004). https://doi.org/10.1029/2003JA010282

Download references

Acknowledgements

We are indebted to the reviewers and editors of the article. Their contributions substantially improved the manuscript. The principal investigators that maintain http://cr0.izmiran.rssi.ru/, http://spaceweather.izmiran.ru/eng/fds2003.html, and https://omniweb.gsfc.nasa.gov/form/dx1.html are also gratefully acknowledged. O. Okike remains grateful to all the WWLLN management team at different universities including the University of Washington and Ebonyi State University for the fruitful lightning research collaboration. Our good and dedicated friend, Dr. Jim Lemon, kindly fine-tuned the grammar. His inputs are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Alhassan.

Additional information

Pushkin Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences http://spaceweather.izmiran.ru/eng/dbs.html

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okike, O., Alhassan, J.A. Preliminary investigation of the multivariate relations between program-selected forbush decreases, worldwide lightning frequency, sunspot number and other solar-terrestrial drivers. Eur. Phys. J. Plus 137, 317 (2022). https://doi.org/10.1140/epjp/s13360-022-02514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02514-z

Navigation