Skip to main content
Log in

Temporal and Periodic Variations of the Solar Flare Index During the Last Four Solar Cycles and Their Association with Selected Geomagnetic-Activity Parameters

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We studied the temporal and periodic variations of the monthly solar flare index (FI) and selected geomagnetic-activity parameters (Ap, Dst, Scalar B, and aa) measured during Solar Cycles 21 – 24 (from January 1, 1975 to December 31, 2020) and report the following findings: 1) all data sets except the FI peak values gradually decreased after 1992, while the FI peak values began their gradual decrease in 1982; 2) all data sets show double or multiple peaks during the maximum phase of solar cycles; 3) the FI shows meaningful correlations with the investigated geomagnetic-activity parameters; 4) the 11-year sunspot-cycle periodicity and periodicities lower than 3.9 months were observed in all data sets without exception; 5) the FI time series exhibits a unique period of 4.8 – 5.2 months that is not present in all the other indices, while geomagnetic aa, Ap, and Dst indices show a unique 6 – 6.1 months periodicity that does not appear in the scalar B and FI; 6) crosswavelet transform (XWT) spectra between FI and other parameters generally show phase mixing in the short (2 – 8 months) period range, while all parameters used in this study were found to be inphase and highly correlated with the 11-year solar-activity period. All these results show that the FI variations are one of the main drivers of the geomagnetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data Availability

Ap, Dst, and scalar B data sets used in this study are downloaded from the OMNIWeb (https://omniweb.gsfc.nasa.gov). The aa index data are taken from the International Service of Geomagnetic Indices (ISGI) website (http://isgi.unistra.fr). The solar-flare index data are taken from the Bogazici University, Kandilli Observatory website (https://astronomi.boun.edu.tr/flare-index).

References

  • Abramenko, V.I.: 2005, Relationship between magnetic power spectrum and flare productivity in solar active regions. Astrophys. J. 629, 1141. DOI.

    Article  ADS  Google Scholar 

  • Abramenko, V., Yurchyshyn, V.: 2010, Magnetic energy spectra in solar active regions. Astrophys. J. 720, 717. DOI.

    Article  ADS  Google Scholar 

  • Ahluwalia, H.S.: 2000, Ap time variations and interplanetary magnetic field intensity. J. Geophys. Res. 105, 27481. DOI.

    Article  ADS  Google Scholar 

  • Atac, T., Ozguc, A.: 1998, Flare index of solar cycle 22. Solar Phys. 180, 397. DOI.

    Article  ADS  Google Scholar 

  • Atac, T., Ozguc, A.: 2001, Flare index during the rising phase of solar cycle 23. Solar Phys. 198, 399. DOI.

    Article  ADS  Google Scholar 

  • Bai, T.: 2003, Periodicities in solar flare occurrence: analysis of cycles 19 – 23. Astrophys. J. 591, 406. DOI.

    Article  ADS  Google Scholar 

  • Bai, T., Sturrock, P.: 1987, The 152-day periodicity of the solar flare occurrence rate. Nature 327, 601. DOI.

    Article  ADS  Google Scholar 

  • Barbieri, L.P., Mahmot, R.E.: 2004, October – November 2003’s space weather and operations lessons learned. Space Weather 2, S09002. DOI.

    Article  ADS  Google Scholar 

  • Bartels, J., Heck, N.H., Johnston, H.F.: 1939, The three-hour-range index measuring geomagnetic activity. J. Geophys. Res. 44, 411. DOI.

    Article  ADS  Google Scholar 

  • Cadavid, A.C., Lawrence, J.K., McDonald, D.P., Ruzmaikin, A.: 2005, Independent global modes of solar magnetic field fluctuations. Solar Phys. 226, 359. DOI.

    Article  ADS  Google Scholar 

  • Carrasco, V.M.S., Vaquero, J.M., Gallego, M.C., Sánchez-Bajo, F.: 2016, A normalized sunspot-area series starting in 1832: an update. Solar Phys. 291, 2931. DOI.

    Article  ADS  Google Scholar 

  • Chang, C., Glover, G.H.: 2010, Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 81. DOI.

    Article  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.J.: 2015, Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophys. Space Sci. 356, 7. DOI.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Gokhale, M.H., Singh, J., Moon, Y.J.: 2016, Mid-term quasi-periodicities in the CaII-K plage index of the Sun and their implications. Astrophys. Space Sci. 361, 54. DOI.

    Article  ADS  Google Scholar 

  • Chowdhury, P., Kilcik, A., Yurchyshyn, V., Obridko, V.N., Rozelot, J.P.: 2019, Analysis of the hemispheric sunspot number time series for the solar cycles 18 to 24. Solar Phys. 294, 142. DOI.

    Article  ADS  Google Scholar 

  • Dennis, B.R.: 1985, Solar hard X-ray bursts. Solar Phys. 100, 465. DOI.

    Article  ADS  Google Scholar 

  • Droege, W., Gibbs, K., Grunsfeld, J.M., Meyer, P., Newport, B.J., Evenson, P., Moses, D.: 1990, A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. Suppl. 73, 279. DOI.

    Article  ADS  Google Scholar 

  • Du, Z.L.: 2015, Bimodal structure of the solar cycle. Astrophys. J. 803, 15.

    ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Gonzalez, A.L.C., Prestes, A., Vieira, L.E.A., dal Lago, A., Guarnieri, F.L., Schuch, N.J.: 2004, Long-term correlation between solar and geomagnetic activity. J. Atmos. Solar-Terr. Phys. 66, 1019. DOI.

    Article  ADS  Google Scholar 

  • Ermolli, I., Giorgi, F., Romano, P., Zuccarello, F., Criscuoli, S., Stangalini, M.: 2014, Fractal and multifractal properties of active regions as flare precursors: a case study based on SOHO/MDI and SDO/HMI observations. Solar Phys. 289, 2525. DOI.

    Article  ADS  Google Scholar 

  • Escudier, R., Mignot, J., Swingedouw, D.: 2013, A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Clim. Dyn. 40, 619. DOI.

    Article  Google Scholar 

  • Fang, K., Gou, X., Chen, F., Liu, C., Davi, N., Li, J., Zhao, Z., Li, Y.: 2012, Tree-ring based reconstruction of drought variability (1615 – 2009) in the Kongtong Mountain area, northern China. Glob. Planet. Change 80, 190. DOI.

    Article  ADS  Google Scholar 

  • Feminella, F., Storini, M.: 1997, Large-scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 322, 311.

    ADS  Google Scholar 

  • Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: 2002, Advanced spectral methods for climatic time series. Rev. Geophys. 40, 1003. DOI.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1967, On the 11-years cycle of solar activity. Solar Phys. 1, 107. DOI.

    Article  ADS  Google Scholar 

  • Gnevyshev, M.N.: 1977, Essential features of the 11-year solar cycle. Solar Phys. 51, 175. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Gonzalez, A.L.C., Tsurutani, B.T.: 1990, Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci. 38, 181. DOI.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Clúa de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529. DOI.

    Article  ADS  Google Scholar 

  • Grinsted, A., Moore, J.C., Jevrejeva, S.: 2004, Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561. DOI.

    Article  ADS  Google Scholar 

  • Ichimoto, K., Kubota, J., Suzuki, M., Tohmura, I., Kurokawa, H.: 1985, Periodic behaviour of solar flare activity. Nature 316, 422. DOI.

    Article  ADS  Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S., Lakhina, G.S.: 2019, Diminishing activity of recent solar cycles (22 – 24) and their impact on geospace. J. Space Weather Space Clim. 9, A1. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2010, Gnevyshev peaks in geomagnetic indices. Planet. Space Sci. 58, 749. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Ozguc, A., Rozelot, J.P., Atac, T.: 2010, Periodicities in solar flare index for cycles 21 – 23 revisited. Solar Phys. 264, 255. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V.B., Abramenko, V., Goode, P.R., Gopalswamy, N., Ozguc, A., Rozelot, J.P.: 2011, Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J. 727, 44. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Yiǧit, E., Yurchyshyn, V., Ozguc, A., Rozelot, J.P.: 2017, Solar and geomagnetic activity relation for the last two solar cycles. Sun Geosph. 12, 31.

    ADS  Google Scholar 

  • Kilcik, A., Yurchyshyn, V., Donmez, B., Obridko, V.N., Ozguc, A., Rozelot, J.P.: 2018, Temporal and periodic variations of sunspot counts in flaring and non-flaring active regions. Solar Phys. 293, 63. DOI.

    Article  ADS  Google Scholar 

  • Kilcik, A., Chowdhury, P., Sarp, V., Yurchyshyn, V., Donmez, B., Rozelot, J.-P., Ozguc, A.: 2020, Temporal and periodic variation of the MCMESI for the last two solar cycles; comparison with the number of different class X-ray solar flares. Solar Phys. 295, 159. DOI.

    Article  ADS  Google Scholar 

  • Kile, J.N., Cliver, E.V.: 1991, A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955 – 1990. Astrophys. J. 370, 442. DOI.

    Article  ADS  Google Scholar 

  • Kilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y.: 2014, Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmos. Solar-Terr. Phys. 107, 12. DOI.

    Article  ADS  Google Scholar 

  • Kirov, B., Asenovski, S., Georgieva, K., Obridko, V.N., Maris-Muntean, G.: 2018, Forecasting the sunspot maximum through an analysis of geomagnetic activity. J. Atmos. Solar-Terr. Phys. 176, 42. DOI.

    Article  ADS  Google Scholar 

  • Kleczek, J.: 1952, Catalogue de l’activite des éruptions chromosphériques. Premiere partie. Publ. No. - Astron. Inst. Czechoslov. Acad. Sci. 22, 1.

    ADS  Google Scholar 

  • Knaack, R., Stenflo, J.O., Berdyugina, S.V.: 2005, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21 – 23. Periodicities, north-south asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067. DOI.

    Article  ADS  Google Scholar 

  • Knoska, S., Petrasek, J.: 1984, Chromospheric flare activity in SOLAR-CYCLE-20. Contrib. Astron. Obs. Skaln. Pleso 12, 165.

    ADS  Google Scholar 

  • Maraun, D., Kurths, J.: 2004, Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process. Geophys. 11, 505. DOI.

    Article  ADS  Google Scholar 

  • Mares, I., Dobrica, V., Mares, C., Demetrescu, C.: 2021, Assessing the solar variability signature in climate variables by information theory and wavelet coherence. Sci. Rep. 11, 11337. DOI.

    Article  ADS  Google Scholar 

  • Marques de Souza Franco, A., Hajra, R., Echer, E., Bolzan, M.J.A.: 2021, Seasonal features of geomagnetic activity: a study on the solar activity dependence. Ann. Geophys. 39, 929. DOI. https://angeo.copernicus.org/articles/39/929/2021/.

    Article  ADS  Google Scholar 

  • Mayaud, P.-N.: 1972, The aa indices: a 100-year series characterizing the magnetic activity. J. Geophys. Res. 77, 6870. DOI.

    Article  ADS  Google Scholar 

  • Oloketuyi, J., Liu, Y., Zhao, M.: 2019, The periodic and temporal behaviors of solar X-ray flares in solar cycles 23 and 24. Astrophys. J. 874, 20. DOI.

    Article  ADS  Google Scholar 

  • Owens, M.J., Forsyth, R.J.: 2013, The heliospheric magnetic field. Living Rev. Solar Phys. 10, 5. DOI.

    Article  ADS  Google Scholar 

  • Ozguc, A., Atac, T.: 1989, Periodic behavior of solar flare index during solar cycles 20 and 21. Solar Phys. 123, 357. DOI.

    Article  ADS  Google Scholar 

  • Ozguc, A., Kilcik, A., Sarp, V., Yesilyaprak, H., Pektas, R.: 2021, Periodic variation of solar flare index for the last solar cycle (Cycle 24). Adv. Astron. 2021, 5391091. DOI.

    Article  ADS  Google Scholar 

  • Park, J.: 1992, Envelope Estimation for Quasi-Periodic Geophysical Signals in Noise: A Multitaper Approach, in Statistics in the Environmental and Earth Sciences, Edward Arnold, London, 189.

    Google Scholar 

  • Percival, D.B., Walden, A.T.: 1993, Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge. DOI. ISBN 978-0521435413.

    Book  MATH  Google Scholar 

  • Poluianov, S., Usoskin, I.: 2014, Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Solar Phys. 289, 2333. DOI.

    Article  ADS  Google Scholar 

  • Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: 1984, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623. DOI.

    Article  ADS  Google Scholar 

  • Singh, Y.P., Badruddin: 2014, Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity: wavelet analysis. Planet. Space Sci. 96, 120. DOI.

    Article  ADS  Google Scholar 

  • Storini, M., Bazilevskaya, G.A., Fluckiger, E.O., Krainev, M.B., Makhmutov, V.S., Sladkova, A.I.: 2003, The GNEVYSHEV gap: a review for space weather. Adv. Space Res. 31, 895. DOI.

    Article  ADS  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys. Year 35, 9.

    Google Scholar 

  • Takalo, J.: 2021, Comparison of geomagnetic indices during even and odd solar cycles SC17 – SC24: signatures of Gnevyshev gap in geomagnetic activity. Solar Phys. 296, 19. DOI.

    Article  ADS  Google Scholar 

  • Thomson, D.J.: 1982, Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055.

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: 1998, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61.

    Article  ADS  Google Scholar 

  • Vaquero, J.M., Gallego, M.C., Trigo, R.M.: 2007, Sunspot numbers during 1736 – 1739 revisited. Adv. Space Res. 40, 1895. DOI.

    Article  ADS  Google Scholar 

  • Verbanac, G., Mandea, M., Vršnak, B., Sentic, S.: 2011, Evolution of solar and geomagnetic activity indices, and their relationship: 1960 – 2001. Solar Phys. 271, 183. DOI.

    Article  ADS  Google Scholar 

  • Verma, V.K., Joshi, G.C., Uddin, W., Paliwal, D.C.: 1991, Search for a 152 – 158 days periodicity in the occurrence rate of solar flares inferred from spectral data of radio bursts. Astron. Astrophys. Suppl. Ser. 90, 83.

    ADS  Google Scholar 

  • Xiang, N.B., Kong, D.F.: 2015, What causes the inter-solar-cycle variation of total solar irradiance? Astron. J. 150, 171. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their constructive comments and suggestions that significantly improved the manuscript.

Funding

V.Y. acknowledges support from NSF AST-1614457, AGS-1954737, AST-2108235, AFOSR FA9550-19-1-0040, NASA 80NSSC17K0016, 80NSSC19K0257, and 80NSSC20K0025 grants

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kilcik.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozguc, A., Kilcik, A. & Yurchyshyn, V. Temporal and Periodic Variations of the Solar Flare Index During the Last Four Solar Cycles and Their Association with Selected Geomagnetic-Activity Parameters. Sol Phys 297, 112 (2022). https://doi.org/10.1007/s11207-022-02049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-02049-7

Keywords

Navigation