Skip to main content
Log in

The Empirical Implication of Conducting a Chree Analysis Using Data from Isolated Neutron Monitors

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The analysis method developed by Chree has received several critical reviews since its introduction in geophysical studies (Chree in Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character 212, 75, 1912). Several of these critiques, such as those by Forbush et al. (Solar Phys. 82, 113, 1983), point to the test of significance of epoch superposition results. Forbush events are a key event time used in space weather investigations. Despite the early indications of Marz (J. Atmos. Solar-Terr. Phys. 59, 957, 1997) that the result of a compositing analysis depends on the method of Forbush decrease (FD) date selection, the various conflicting methods of key event date selection appearing in the publications that document an FD-based epoch analysis are yet to be cross-examined in detail. This is the goal of the present submission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ahluwalia, H.S., Ygbuhay, R.C., Duldig, M.L.: 2009, Two intense Forbush decreases of solar activity cycle 22. Adv. Space Res. 44, 58. DOI .

    Article  ADS  Google Scholar 

  • Ananth, A.G., Venkatesan, D.: 1993, Effect of interplanetary shocks and magnetic clouds on onset cosmic-ray decreases. Solar Phys. 143, 373. DOI .

    Article  ADS  Google Scholar 

  • Badruddin, Venkatesan, D., Zhu, B.Y.: 1991, Study and effect of magnetic clouds on the transient modulation of cosmic-ray intensity. Solar Phys. 134, 203. DOI .

    Article  ADS  Google Scholar 

  • Barouch, E., Burlaga, L.F.: 1975, Causes of Forbush decreases and other cosmic ray variations. J. Geophys. Res. 80, 449. DOI .

    Article  ADS  Google Scholar 

  • Belov, A.V.: 2008, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. In: Proceedings IAU Symposium 257. DOI .

    Chapter  Google Scholar 

  • Bhaskar, B., Subramanian, P., Vichare, G.: 2016, Relative contribution of the magnetic field barrier and solar wind speed in ICME-associated Forbush decreases. Astrophys. J. 828, 104. DOI .

    Article  ADS  Google Scholar 

  • Bieber, J.W., Chen, J.: 1991, Cosmic-ray diurnal anisotropy, 1936 – 1988: implications for drift and modulation theories. Astrophys. J. 372, 301. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93, 55.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., von Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964 – 1994. J. Geophys. Res. 101(A10), 21561. DOI .

    Article  ADS  Google Scholar 

  • Chree, C.: 1912, Some phenomena of sunspots and of terrestrial magnetism, at Kew Observatory. Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character 212, 484. DOI .

    Article  Google Scholar 

  • Chree, C.: 1914, Some phenomena of sunspots and of terrestrial magnetism II. Philos. Trans. Roy. Soc. London, Ser. A, Contain. Pap. Math. Phys. Character 213, 245. https://www.jstor.org/stable/91066 .

    Article  ADS  Google Scholar 

  • Chronis, T.G.: 2009, Investigating possible links between incoming cosmic rays fluxes and lightning activity over the United States. J. Climate 22, 5748. DOI .

    Article  ADS  Google Scholar 

  • Dragic, A., Anicin, I., Banjanac, R., Udovicic, V., Jokovic, D., Maletic, D., Puzovic, J.: 2011, Forbush decreases – clouds relation in the neutron monitor era. Astrophys. Space Sci. Trans. 7, 315. DOI .

    Article  ADS  Google Scholar 

  • Fenton, A.G., McCracken, K.G., Rose, D.C., Wilson, B.G.: 1959, The onset times of cosmic ray intensity decreases. Can. J. Phys. 37, 970. DOI .

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1938, On world-wide changes in cosmic-ray intensity. Phys. Rev. 54(12), 975. DOI .

    Article  ADS  Google Scholar 

  • Forbush, S.E., Pomerantz, M.A., Duggal, S.P., Tsao, C.H.: 1983, Statistical considerations in the analysis of solar oscillation data by the superposed epoch method. Solar Phys. 82, 113. DOI .

    Article  ADS  Google Scholar 

  • Haurwitz, M.W., Brier, G.W.: 1981, A critique of the superposed epoch analysis method: its application to solar–weather relations. Mon. Weather Rev. 109, 2074. DOI .

    Article  ADS  Google Scholar 

  • Hofer, M.Y., Fluckiger, E.O.: 2000, Cosmic ray spectral variations and anisotropy near Earth during the March 24, 1991, Forbush decrease. J. Geophys. Res. 105, 23,085. DOI .

    Article  ADS  Google Scholar 

  • Jenkins, R.W., Lockwood, J.A., Ifedili, S.O., Chupp, E.L.: 1970, Latitude and altitude dependence of the cosmic ray albedo neutron flux. J. Geophys. Res. 75(22), 4197. DOI .

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2010, Severe geomagnetic storms and Forbush decreases: interplanetary relationships re-examined. Ann. Geophys. 28, 479. DOI .

    Article  ADS  Google Scholar 

  • Kristjansson, J.E., Stjern, C.W., Stordal, F., Fjaraa, A.M., Myrhre, G., Jonasson, K.: 2008, Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data. Atmos. Chem. Phys. Discuss. 8, 13265. DOI .

    Article  ADS  Google Scholar 

  • Lagouvardos, K., Kotroni, V., Betz, H., Schmidt, K.: 2009, A comparison of lightning data provided by ZEUS and LINET networks over Western Europe. Nat. Hazards Earth Syst. Sci. 9, 1713.

    Article  ADS  Google Scholar 

  • Laken, B.A., Kniveton, D.R.: 2011, Forbush decreases and Antarctic cloud anomalies in the upper troposphere. J. Atmos. Solar-Terr. Phys. 73, 371. DOI .

    Article  ADS  Google Scholar 

  • Laken, B., Kniveton, D., Wolfendale, A.: 2011, Forbush decreases, solar irradiance variations, and anomalous cloud changes. J. Geophys. Res. 116. DOI .

  • Lemaitre, G., Vallarta, M.S.: 1933, On Compton’s latitude effect of cosmic radiation. Phys. Rev. 43(2), 87. DOI .

    Article  ADS  MATH  Google Scholar 

  • Lingri, D., Mavromichalaki, H., Belov, A., Eroshenko, E., Yanke, V., Abunin, A., Abunina, M.: 2016, Solar activity parameters and associated Forbush decreases during the minimum between Cycles 23 and 24 and the ascending phase of Cycle 24. Solar Phys., 291(3), 1025. DOI .

    Article  ADS  Google Scholar 

  • Lockwood, J.A.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12, 658. DOI .

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Razdan, H.: 1963, Asymmetries in the Forbush decreases of the cosmic radiation 1. Differences in onset times. J. Geophys. Res. 68(6), 1581. DOI .

    Article  ADS  Google Scholar 

  • Lockwood, J.A., Webber, W.R.: 1969, Cosmic-ray intensity variations on January 26 – 27, 1968. J. Geophys. Res. 74, 5599. DOI .

    Article  ADS  Google Scholar 

  • Marcz, F.: 1997, Short-term changes in atmospheric electricity associated with Forbush decreases. J. Atmos. Solar-Terr. Phys. 59(9), 957.

    Article  Google Scholar 

  • Oh, S.Y., Yi, Y.: 2009, Statistical reality of globally nonsimultaneous Forbush decrease events. J. Geophys. Res. 114, A11102. DOI .

    Article  ADS  Google Scholar 

  • Oh, S.Y., Yi, Y., Kim, H.Y.: 2008, Globally simultaneous Forbush decrease events and their implications. J. Geophys. Res. 113, A01103. DOI .

    Article  ADS  Google Scholar 

  • Okike, O., Collier, A.B.: 2011a, A multivariate study of Forbush decrease simultaneity. J. Atmos. Solar-Terr. Phys. 73, 796. DOI .

    Article  ADS  Google Scholar 

  • Okike, O., Collier, A.B.: 2011b, Testing the cosmic ray-lightning connection hypothesis. In: General Assembly and Scientific Symposium, 2011 XXXth URSI IEEE, 1. DOI .

    Chapter  Google Scholar 

  • Pankaj, K.S., Shukla, R.P.: 1994, High-speed solar wind stream of two different origins and cosmic-ray variations during 1980 – 1986. Solar Phys. 154, 177. DOI .

    Article  ADS  Google Scholar 

  • Pankaj, K.S., Singh, N.S.: 2005, Latitude and distribution of solar flares and their association with coronal mass ejection. Chin. J. Astron. Astrophys. 5(2), 198. DOI .

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1964, Theory of streaming of cosmic rays and the diurnal variation. Planet. Space Sci. 12(8), 735. DOI .

    Article  ADS  Google Scholar 

  • Prager, M.H., Hoenig, J.M.: 1989, Superposed epoch analysis: a randomization test of environmental effects on recruitment with application to chub mackerel. Trans. Am. Fish. Soc. 118, 608. DOI .

    Article  Google Scholar 

  • R Core Team: 2014, R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org .

  • Ramirez, O.O.U., Galicia, J.F.V., Munoz, G., Huttunen, E.: 2013, A catalog of Forbush decreases of the cosmic radiation for the period 1997 – 2007. In: 33rd International Cosmic Ray Conference, Rio de Janeiro.

    Google Scholar 

  • Rao, U.R.: 1972, Solar modulation of galactic cosmic radiation. Space Sci. Rev. 12, 719. DOI .

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F., McCracken, K.G.: 1965, A study of vertical cutoff rigidities using sixth degree simulations of the geomagnetic field. J. Geophys. Res. 70(17), 4117. DOI .

    Article  ADS  Google Scholar 

  • Shea, M.A., Smart, D.F., Swinson, D.B., Wilson, M.D.: 1993, High energy cosmic ray modulation in March – June 1991. In: Proceedings of 23rd ICRC, Calgary 3, 735.

    Google Scholar 

  • Singh, Y.P., Badruddin: 2006, Statistical considerations in superposed epoch analysis and its applications in space research. J. Atmos. Solar-Terr. Phys. 68(7), 803. DOI .

    Article  ADS  Google Scholar 

  • Smart, D.F., Shea, M.A., Fluckiger, E.O.: 2000, Magnetospheric models and trajectories computations. Space Sci. Rev. 93, 305. DOI .

    Article  ADS  Google Scholar 

  • Storey, J.R.: 1959, Latitude dependence of a Forbush-type cosmic-ray intensity decrease observed at aircraft altitude. Phys. Rev. 113(1), 302. DOI .

    Article  ADS  Google Scholar 

  • Svensmark, H., Bondo, T., Svensmark, J.: 2009, Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys. Res. Lett. 36, L15101. DOI .

    Article  ADS  Google Scholar 

  • Svensmark, J., Enghoff, M.B., Svensmark, H.: 2012,. Atmos. Chem. Phys. Discuss. 12, 3595. DOI .

    Article  ADS  Google Scholar 

  • Tezari, A., Mavromichalaki, H.: 2016, Diurnal anisotropy of cosmic rays during intensive solar activity for the period 2001 – 2014. New Astron. 46, 78. DOI .

    Article  ADS  Google Scholar 

  • Tezari, A., Mavromichalaki, H., Katsinis, D., Kanellakopoulos, A., Kolovi, S., Plainaki, C., Andriopoulou, M.: 2016, Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001 – 2014. Ann. Geophys. 34, 1053. DOI .

    Article  ADS  Google Scholar 

  • Todd, M.C., Kniveton, D.R.: 2001, Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J. Geophys. Res. 106, 32031. DOI .

    Article  ADS  Google Scholar 

  • Tsyganenko, N.A., Stern, D.P.: 1996, Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res. 101, 27187. DOI .

    Article  ADS  Google Scholar 

  • Van Allen, J.A.: 1993, Recovery of interplanetary cosmic ray intensity following the great Forbush decrease of Mid-1991. Geophys. Res. Lett. 20(24), 2798. DOI .

    Article  Google Scholar 

  • Venkatesan, D., Badruddin, Ananth, A.G., Pillai, S.: 1992, Significance of the turbulent sheath following the interplanetary shocks in producing Forbush decreases. Solar Phys. 137, 345. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We feel indebted to the groups maintaining the websites http://www.nmdb.eu and http://cr0.izmiran.rssi.ru/ . The first author acknowledges the kind assistance of James Arthur Lemon, University of New South Wales. The present analyses benefited so much from his great expertise in R for Statistical Computing software. The thought-provoking queries of the anonymous referees led to significant improvements of the manuscript. Their time and efforts are acknowledged with thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Okike.

Ethics declarations

Declaration of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okike, O., Umahi, A.E. The Empirical Implication of Conducting a Chree Analysis Using Data from Isolated Neutron Monitors. Sol Phys 294, 16 (2019). https://doi.org/10.1007/s11207-019-1405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1405-y

Keywords

Navigation