Skip to main content
Log in

Riemann-Hilbert approach and N-soliton solution for the Chen-Lee-Liu equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider the Riemann-Hilbert method for the Chen-Lee-Liu equation and obtain a new formula of the explicit N-soliton solution (see equation (44) in Sect. 4), which is expressed by a ratio of two \((N+1)\times (N+1)\) determinants. Meanwhile, we have provided a way to deal with an integral factor in the sectional analytic functions \(P_{\pm }\). Furthermore, by applying asymptotic analysis and using the property of the Cauchy determinant, the simple elastic interactions of N-soliton are concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Hasegawa, F. Tappert , Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. I: anomalous dispersion, Appl. Phys. Lett. 23 (1972) 142-144

  2. A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical physics in dispersive dielectric fibers. II: normal dispersion, Appl. Phys. Lett. 23 (1973) 171-172

  3. R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams, Phys. Rev. Lett. 13 (1964) 479–482

    Article  ADS  Google Scholar 

  4. V. E. Zakharov, Stability of perodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9 (1968) 190–194

    Article  ADS  Google Scholar 

  5. M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, Nonlinear-evolution equations of physical significance, Phys. Rev. Lett. 31 (1973) 125–127

    Article  ADS  MathSciNet  Google Scholar 

  6. D. J. Kaup, A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys. 19 (1978) 798–801

    Article  ADS  Google Scholar 

  7. Mj\(\phi \)lhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys. 16 (1976) 321-34

  8. N. Tzoar, M. Jain, Self-phase modulation in long-geometry optical waveguides, Phys. Rev. A 23 (1981) 1266–1270

    Article  ADS  Google Scholar 

  9. D. Anderson, M. Lisak, Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides, Phys. Rev. A 27 (1983) 1393–1398

    Article  ADS  Google Scholar 

  10. H. H. Chen, Y. C. Lee, C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr. 20 (1979) 490–492

    Article  ADS  MathSciNet  Google Scholar 

  11. F. DeMartini, C. H. Townes, T. K. Gustafson, P. L. Kelley, Self-steepening of light pulses, Phys. Rev. 164 (1967) 312–323

    Article  ADS  Google Scholar 

  12. J. Moses, B. A. Malomed, F. W. Wise, Self-steepening of ultrashort optical pulses without self-phase-modulation, Phys. Rev. A 76 (2007) 021802

    Article  ADS  Google Scholar 

  13. A. Nakamura, H. H. Chen, Multi-soliton solutions of a derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 49 (1980) 813–816

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Kakei, N. Sasa, J. Satsuma, Bilinearization of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 64 (1995) 1519–1523

    Article  ADS  MathSciNet  Google Scholar 

  15. Y. S. Zhang, L. J. Guo, Z. X. Zhou, J. S. He, Darboux transformation of the second-type derivative nonlinear Schrödinger equation, Lett. Math. Phys. 105 (2015) 853

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Tsuchida, M. Wadati, New integrable systems of derivative nonlinear Schrödinger equations with multiple components. Phys. Lett. A 257 (1999) 53–64

    Article  ADS  MathSciNet  Google Scholar 

  17. M. J. Xu, T. C. Xia, B. B. Hu, Riemann-Hilbert approach and N-soliton solutions for the Chen-Lee-Liu equation, Modern Phys. Lett. B 33 (2019) 1950002

    Article  ADS  MathSciNet  Google Scholar 

  18. M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974) 249–315

    Article  MathSciNet  Google Scholar 

  19. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett. 19 (1967) 1095–1097

    Article  ADS  Google Scholar 

  20. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Korteweg-deVries equation and generalizations. VI. methods for exact solution, Comm. Pure Appl. Math. 27 (1974) 97-133

  21. S. Novikov, S. Manakov, L. Pitaevskii, V. Zakharov, Theory of solitons: the inverse scattering method (New York and London, Consultants Bureau, 1984)

    MATH  Google Scholar 

  22. M.J. Ablowitz, A.S. Fokas, Complex Variables: Introduction and Applications (Cambridge University Press, 2003)

  23. A. S. Fokas, A unified approach to boundary value problems (SIAM, 2008)

  24. J. Yang, Nonlinear waves in integrable and nonintegrable systems (SIAM, 2010)

  25. J. Yang, D. Kaup, Squared eigenfunctions for the Sasa-Satsuma equation, J. Math. Phys. 50 (2009) 023504

    Article  ADS  MathSciNet  Google Scholar 

  26. D. S. Wang, D. J. Zhang, J. K. Yang, Integrable properties of the general coupled nonlinear Schrödinger equations, J. Math. Phys. 51 (2010) 023510

    Article  ADS  MathSciNet  Google Scholar 

  27. B. L. Guo, L. M. Ling, Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation, J. Math. Phys. 53 (2012) 073506

    Article  ADS  MathSciNet  Google Scholar 

  28. X. Geng, J. Wu, Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion 60 (2016) 62–72

    Article  MathSciNet  Google Scholar 

  29. Y. S. Zhang, Y. Cheng, J. S. He, Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation, J. Nonlinear Math. Phys. 24 (2017) 210–223

    Article  MathSciNet  Google Scholar 

  30. J. Hu, J. Xu, G. F. Yu, Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation, J. Nonlinear Math. Phys. 25 (2018) 633–649

    Article  MathSciNet  Google Scholar 

  31. M. Wadati, K. Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Japan, 52, (1983) 394–398

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11871471,11931017), the Yue Qi Outstanding Scholar Project, China University of Mining and Technology, Beijing (Grant No. 00-800015Z1177) and the Fundamental Research Funds for Central Universities (Grant No. 00-800015A566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqin Qiu.

Appendix A. The proof of Theorem 4.3

Appendix A. The proof of Theorem 4.3

Proof

Since \(\mathrm{Im}\lambda _k^2>0(k=1,2,\cdots ,N)\), the asymptotic behavior of \(\exp (-\theta _k)\) is decided by \(x+4(\mathrm{Re}\lambda _k^2)t\). Denoting the vicinity of \(x=-4(\mathrm{Re}\lambda _k^2)t\) as \(\Omega _k\), in the limit of \(t\rightarrow +\infty \), then we may obtain

$$\begin{aligned} x+4(\mathrm{Re}\lambda _j^2)t=-4(\mathrm{Re}\lambda _k^2-\mathrm{Re}\lambda _j^2)t\rightarrow +\infty \quad j<k,\\ x+4(\mathrm{Re}\lambda _j^2)t=-4(\mathrm{Re}\lambda _k^2-\mathrm{Re}\lambda _j^2)t\rightarrow -\infty \quad j>k. \end{aligned}$$

Thus,

$$\begin{aligned} \exp (-\theta _j)\rightarrow 0\quad j<k; \quad \exp (\theta _j)\rightarrow 0\quad j>k. \end{aligned}$$

Then, in the vicinity of \(\Omega _k\)

$$\begin{aligned} \mathrm{det}M_1\sim&\left| \begin{array}{cccccccc} \frac{-2\lambda _1^{*}}{\lambda _1^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _1^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}}{\lambda _1^2-\lambda _k^{*2}}&{}0&{}\cdots &{}0&{}1\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots &{}\vdots \\ \frac{-2\lambda _1^{*}}{\lambda _{k-1}^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _{k-1}^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}}{\lambda _{k-1}^2-\lambda _k^{*2}}&{}0&{}\cdots &{}0&{}1\\ \frac{-2\lambda _1^{*}}{\lambda _{k}^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _{k}^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}-2\lambda _ke^{-\theta _k-2\theta _k^*}}{\lambda _{k}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _N^{*2}}&{}1\\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{k+1}e^{-2\theta _k^*}}{\lambda _{k+1}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{N}^{*2}}&{}0\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots &{}\vdots \\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{N}e^{-2\theta _k^*}}{\lambda _{N}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{N}^{*2}}&{}0\\ 0&{}\cdots &{}0&{}e^{-2\theta _k^*}&{}1&{}\cdots &{}1&{}0\\ \end{array}\right| \\&\times \exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\ =&(-1)^{N-k+1}\left| \begin{array}{ccccc} \frac{-2\lambda _1^*}{\lambda _1^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^*}{\lambda _1^2-\lambda _{k-1}^{*2}}&{}1\\ \vdots &{} &{}\vdots &{}\vdots \\ \frac{-2\lambda _1^*}{\lambda _k^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^*}{\lambda _k^2-\lambda _{k-1}^{*2}}&{}1\\ \end{array}\right| \left| \begin{array}{ccccc} \frac{-2\lambda _{k+1}^*e^{-2\theta _k^*}}{\lambda _{k+1}^2-\lambda _{k}^{*2}} &{}\frac{-2\lambda _{k+1}^*}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}} &{}\cdots &{}\frac{-2\lambda _{k+1}^*}{\lambda _{k+1}^2-\lambda _{N}^{*2}} \\ \vdots &{}\vdots &{}&{}\vdots \\ \frac{-2\lambda _{N}^*e^{-2\theta _k^*}}{\lambda _{N}^2-\lambda _{k}^{*2}} &{}\frac{-2\lambda _{N}^*}{\lambda _{N}^2-\lambda _{k+1}^{*2}} &{}\cdots &{}\frac{-2\lambda _{N}^*}{\lambda _{N}^2-\lambda _{N}^{*2}}\\ e^{-2\theta _k^*}&{}1&{}\cdots &{}1\\ \end{array}\right| \\&\times \exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\ =&-\prod \limits _{j=1}^{k-1}(-2\lambda _j^*)\prod \limits _{j=1}^{k-1}\frac{\lambda _k^2-\lambda _j^2}{\lambda _k^2-\lambda _j^{*2}}\prod \limits _{j=k+1}^{N}(-2\lambda _j)\prod \limits _{j=k+1}^{N}\frac{\lambda _j^{*2}-\lambda _k^{*2}}{\lambda _j^2-\lambda _k^{*2}}\\&\exp \left[ \sum _{j=1}^{k}(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\&\times \exp (-2\theta _k^*) C(\lambda _1^2,\cdots ,\lambda _{k-1}^2)C(\lambda _{k+1}^2,\cdots ,\lambda _N^2), \end{aligned}$$

where \(C(\lambda _1^2,\cdots ,\lambda _{k}^2)\) denotes the determinant of Cauchy matrix \((\frac{1}{\lambda _j^2-\lambda _l^{*2}})_{k\times k}\), \(j,l=1,2,\cdots ,k\). Similarly, in the vicinity of \(\Omega _k\), we have

$$\begin{aligned} {{\text{ d }et}}M_2\sim&\left| \begin{array}{cccccccc} \frac{-2\lambda _1^{*}}{\lambda _1^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _1^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}}{\lambda _1^2-\lambda _k^{*2}}&{}0&{}\cdots &{}0&{}1\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots &{}\vdots \\ \frac{-2\lambda _1^{*}}{\lambda _{k-1}^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _{k-1}^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}}{\lambda _{k-1}^2-\lambda _k^{*2}}&{}0&{}\cdots &{}0&{}1\\ \frac{-2\lambda _1^{*}}{\lambda _{k}^2-\lambda _1^{*2}} &{}\cdots &{}\frac{-2\lambda _{k-1}^{*}}{\lambda _{k}^2-\lambda _{k-1}^{*2}}&{}\frac{-2\lambda _k^{*}-2\lambda _ke^{-\theta _k-2\theta _k^*}}{\lambda _{k}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _N^{*2}}&{}1\\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{k+1}e^{-2\theta _k^*}}{\lambda _{k+1}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{N}^{*2}}&{}0\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots &{}\vdots \\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{N}e^{-2\theta _k^*}}{\lambda _{N}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{N}^{*2}}&{}0\\ \frac{2}{\lambda _1^*}&{}\cdots &{}\frac{2}{\lambda _{k-1}^*}&{}\frac{2}{\lambda _k^*}&{}0&{}\cdots &{}0&{}1\\ \end{array}\right| \\&\times \exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\ \\ =&\left| \begin{array}{cccccccc} \frac{-2\lambda _1^{2}}{(\lambda _1^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k-1}^{2}}{(\lambda _1^2-\lambda _{k-1}^{*2})\lambda _{k-1}^*}&{}\frac{-2\lambda _k^{2}}{(\lambda _1^2-\lambda _k^{*2})\lambda _k^*}&{}0&{}\cdots &{}0\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots \\ \frac{-2\lambda _{1}^{2}}{(\lambda _{k-1}^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k-1}^{2}}{(\lambda _{k-1}^2-\lambda _{k-1}^{*2})\lambda _{k-1}^*}&{}\frac{-2\lambda _{k}^{2}}{(\lambda _{k-1}^2-\lambda _k^{*2})\lambda _k^*}&{}0&{}\cdots &{}0\\ \frac{-2\lambda _1^{2}}{(\lambda _{k}^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k-1}^{2}}{(\lambda _{k}^2-\lambda _{k-1}^{*2})\lambda _{k-1}^*}&{}\frac{-2\lambda _{k}^{2}}{(\lambda _{k}^2-\lambda _{k}^{*2})\lambda _{k}^*}+\frac{-2\lambda _ke^{-2\theta _k-2\theta _k^*}}{\lambda _{k}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _N^{*2}}\\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{k+1}e^{-2\theta _k^*}}{\lambda _{k+1}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{N}^{*2}}\\ \vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots \\ 0&{}\cdots &{}0&{}\frac{-2\lambda _{N}e^{-2\theta _k^*}}{\lambda _{N}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{N}^{*2}}\\ \end{array}\right| \\&\times \exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\ =&\left( \left| \begin{array}{cccccccc} \frac{-2\lambda _1^{2}}{(\lambda _1^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k-1}^{2}}{(\lambda _1^2-\lambda _{k-1}^{*2})\lambda _{k-1}^*}\\ \vdots &{}&{}\vdots \\ \frac{-2\lambda _{1}^{2}}{(\lambda _{k-1}^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k-1}^{2}}{(\lambda _{k-1}^2-\lambda _{k-1}^{*2})\lambda _{k-1}^*}\\ \end{array}\right| \left| \begin{array}{cccccccc} \frac{-2\lambda _ke^{-2\theta _k-2\theta _k^*}}{\lambda _{k}^2-\lambda _k^{*2}}&{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _ke^{-2\theta _k}}{\lambda _k^2-\lambda _N^{*2}}\\ \frac{-2\lambda _{k+1}e^{-2\theta _k^*}}{\lambda _{k+1}^2-\lambda _{k}^{*2}}&{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{N}^{*2}}\\ \vdots &{}\vdots &{}&{}\vdots \\ \frac{-2\lambda _{N}e^{-2\theta _k^*}}{\lambda _{N}^2-\lambda _{k}^{*2}}&{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{N}^{*2}}\\ \end{array}\right| +\right. \\&\left. \left| \begin{array}{cccccccc} \frac{-2\lambda _1^{2}}{(\lambda _1^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k}^{2}}{(\lambda _1^2-\lambda _k^{*2})\lambda _k^*}\\ \vdots &{}&{}\vdots \\ \frac{-2\lambda _1^{2}}{(\lambda _{k}^2-\lambda _1^{*2})\lambda _1^*} &{}\cdots &{}\frac{-2\lambda _{k}^{2}}{(\lambda _{k}^2-\lambda _{k}^{*2})\lambda _{k}^*}\\ \end{array}\right| \left| \begin{array}{cccccccc} \frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{k+1}}{\lambda _{k+1}^2-\lambda _{N}^{*2}}\\ \vdots &{}&{}\vdots \\ \frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{k+1}^{*2}}&{}\cdots &{}\frac{-2\lambda _{N}}{\lambda _{N}^2-\lambda _{N}^{*2}}\\ \end{array}\right| \right) \times \\&\exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] \\ =&\left( \prod \limits _{j=1}^{k-1}\frac{-2\lambda _j^2}{\lambda _j^*}C(\lambda _1^2,\cdots ,\lambda _{k-1}^2)\prod \limits _{j=k}^{N}(-2\lambda _j)C(\lambda _k^2,\cdots ,\lambda _N^2)e^{-2\theta _k-2\theta _k^*} \right. \\&\left. + \prod \limits _{j=1}^{k}\frac{-2\lambda _j^2}{\lambda _j^*}C(\lambda _1^2,\cdots , \lambda _{k}^2)\prod \limits _{j=k+1}^{N}(-2\lambda _j)C(\lambda _{k+1}^2,\cdots , \lambda _N^2)\right) \\&\times \exp \left[ \sum _{j=1}^k(\theta _j+\theta _j^*)-\sum _{j=k+1}^N(\theta _j+\theta _j^*)\right] . \end{aligned}$$

Due to the recursive property of Cauchy determinant, it gives rise to the following two identities

$$\begin{aligned}&\frac{C(\lambda _k^2,\cdots ,\lambda _N^2)}{C(\lambda _{k+1}^2,\cdots ,\lambda _N^2)}=\prod \limits _{j=k+1}^{N}\frac{\lambda _k^2-\lambda _j^2}{\lambda _k^2-\lambda _j^{*2}}\prod \limits _{j=k+1}^{N}\frac{\lambda _j^{*2}-\lambda _k^{*2}}{\lambda _j^2-\lambda _k^2}\frac{1}{\lambda _k^2-\lambda _k^{*2}}, \\&\quad \frac{C(\lambda _1^2,\cdots ,\lambda _k^2)}{C(\lambda _{1}^2,\cdots ,\lambda _{k-1}^2)}=\prod \limits _{j=1}^{k-1}\frac{\lambda _j^{*2}-\lambda _k^{*2}}{\lambda _j^2-\lambda _k^{*2}}\prod \limits _{j=1}^{k-1}\frac{\lambda _k^{2}-\lambda _j^{2}}{\lambda _k^2-\lambda _j^{*2}}\frac{1}{\lambda _k^2-\lambda _k^{*2}}. \end{aligned}$$

Based on above results, in the vicinity of \(\Omega _k\), we may obtain

$$\begin{aligned} q&=4\mathrm{i}\frac{\mathrm{det}M_1}{\mathrm{det}M_2}\\&\sim \frac{2\mathrm{i}\lambda _k^*(\lambda _k^2-\lambda _k^{*2})}{\prod \limits _{j=1}^{k-1}\frac{\lambda _j^{2}}{\lambda _j^{*2}}\left( \prod \limits _{j=1}^{k-1}\frac{\lambda _k^{2}-\lambda _j^{*2}}{\lambda _k^{2}-\lambda _j^{2}}\prod \limits _{j=k+1}^{N}\frac{\lambda _k^2-\lambda _j^2}{\lambda _k^2-\lambda _j^{*2}}\lambda _k\lambda _k^*\exp (-2\theta _k)+\prod \limits _{j=1}^{k-1}\frac{\lambda _j^{*2}-\lambda _k^{*2}}{\lambda _j^2-\lambda _k^{*2}}\prod \limits _{j=k+1}^{N}\frac{\lambda _j^{2}-\lambda _k^{*2}}{\lambda _j^{*2}-\lambda _k^{*2}}\lambda _k^2\exp (2\theta _k^*)\right) }. \end{aligned}$$

Let

$$\begin{aligned} \alpha _k=\prod \limits _{j=1}^{k-1}\frac{\lambda _k^2-\lambda _j^{*2}}{\lambda _k^2-\lambda _j^{2}},\quad \beta _k=\prod \limits _{j=k+1}^{N}\frac{\lambda _k^2-\lambda _j^{2}}{\lambda _k^2-\lambda _j^{*2}}. \end{aligned}$$
(A.1)

Then, we obtain a simple form of the asymptotic behavior for q as \(t\rightarrow +\infty \)

$$\begin{aligned} q\sim \frac{2\mathrm{i}\lambda _k^*(\lambda _k^2-\lambda _k^{*2})\exp (2\mathrm{i}\theta _{k,\mathrm{I}}-\mathrm{i}~\mathrm{arg}\alpha _k-\mathrm{i}~\mathrm{arg}\beta _k)}{\prod \limits _{j=1}^{k-1}\frac{\lambda _j^2}{\lambda _j^{*2}}\left( \lambda _k^2\exp (2\theta _{k,\mathrm{R}}-\ln |\alpha _k\beta _k|)+\lambda _k\lambda _k^*\exp (-2\theta _{k,\mathrm{R}}+\ln |\alpha _k\beta _k|)\right) }. \end{aligned}$$
(A.2)

Similarly, setting \(t\rightarrow -\infty \) and taking the similar procedure as above, we have

$$\begin{aligned} q\sim \frac{2\mathrm{i}\lambda _k^*(\lambda _k^2-\lambda _k^{*2})\exp (2\mathrm{i}\theta _{k,\mathrm{I}}+\mathrm{i}~\mathrm{arg}\alpha _k+\mathrm{i}~\mathrm{arg}\beta _k)}{\prod \limits _{j=k+1}^{N}\frac{\lambda _j^2}{\lambda _j^{*2}}\left( \lambda _k^2\exp (2\theta _{k,\mathrm{R}}+\ln |\alpha _k\beta _k|)+\lambda _k\lambda _k^*\exp (-2\theta _{k,\mathrm{R}}-\ln |\alpha _k\beta _k|)\right) }. \end{aligned}$$
(A.3)

It is remarked that from (A.1), the above discussion corresponding to the asymptotic behavior of the k-th soliton requires \(1<k<N\). In order to obtain the asymptotic behaviors of the 1st and N-th solitons, it can be also similarly proved: if \(k=1\), we just need to define \(\alpha _1=1,\prod \limits _{j=1}^{k-1}\frac{\lambda _j^2}{\lambda _j^{*2}}=1\) , and define \(\beta _N=1,\prod \limits _{j=k+1}^{N}\frac{\lambda _j^2}{\lambda _j^{*2}}=1\) for the case \(k=N\). Thus, on the whole plane, we may conclude that q has the asymptotic behavior as (49). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, D. Riemann-Hilbert approach and N-soliton solution for the Chen-Lee-Liu equation. Eur. Phys. J. Plus 136, 825 (2021). https://doi.org/10.1140/epjp/s13360-021-01830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01830-0

Navigation