Skip to main content
Log in

The Riemann–Hilbert approach for the Chen–Lee–Liu equation and collisions of multiple solitons

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider the Riemann–Hilbert method for the Chen–Lee–Liu equation with a vanishing boundary condition. By analyzing the asymptotic, analytic, and symmetric properties of the Jost solutions, we display the expression of scattering coefficients, theta condition, and the residue conditions. A revised Riemann–Hilbert problem (RHP) is constructed from the Jost solutions, which satisfies the normalization condition. By assuming that the RHP has simple poles, we solve the RHP and display the raw formulae for N-th order solitons of the CLL equation. By applying the Cauchy–Binent formula, we present the explicit formulae for N-th order solitons and consider the exciting collisions of the multiple solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data that support the findings of the study are available within the article.

References

  1. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    ADS  MathSciNet  Google Scholar 

  2. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguides. Phys. Rev. A 23, 1266–1270 (1981)

    ADS  Google Scholar 

  3. Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 17, 1393–1398 (1983)

    ADS  Google Scholar 

  4. Moses, J., Malomed, B.A.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 021802D (2007)

    ADS  Google Scholar 

  5. Xu, G.-Q., Wazwaz, A.-M.: Integrability aspects and localized wave solutions for a new \((4+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Google Scholar 

  6. Wazwaz, A.-M., Xu, G.-Q.: Kadomtsev–Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100, 3711–3716 (2020)

    Google Scholar 

  7. Xu, G.-Q., Wazwaz, A.-M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101, 581–595 (2020)

    Google Scholar 

  8. Ma, Y.-L., Wazwaz, A.-M., Li, B.-Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  9. Yan, Y.-Y., Liu, W.-J.: Soliton rectangular pulses and bound states in a dissipative system modeled by the variable-coefficients complex cubic-quintic Ginzburg-Landau equation. Chin. Phys. Lett. 38, 094201 (2021)

    ADS  Google Scholar 

  10. Wazwaz, A.-M.: New \((3+1)\)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  11. Wazwaz, A.-M.: Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation. Nonlinear Dyn. 104, 4311–4315 (2021)

    Google Scholar 

  12. Wazwaz, A.-M.: Multi-soliton solutions for integrable \((3+1)\)-dimensional modified seventh-order Ito and seventh-order Ito equations. Nonlinear Dyn. 110, 3713–3720 (2022)

    Google Scholar 

  13. Wazwaz, A.-M.: Integrable \((3+1)\)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 109, 1929–1934 (2022)

    Google Scholar 

  14. Wang, T.-Y., Zhou, Q., Liu, W.-J.: Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chin. Phys. B 31, 020501 (2022)

    ADS  Google Scholar 

  15. Xu, G.-Q., Wazwaz, A.M.: A new \((n+1)\)-dimensional generalized Kadomtsev–Petviashvili equation: integrability characteristics and localized solutions. Nonlinear Dyn. 111, 9495–9507 (2023)

    Google Scholar 

  16. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended \((3 + 1)\)- and \((2 + 1)\)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  17. Wang, H.T., Li, X., Zhou, Q., Liu, W.-J.: Dynamics and spectral analysis of optical rogue waves for a coupled nonlinear Schrödinger equation applicable to pulse propagation in isotropic media. Chaos Solitons Fractals 166, 112924 (2023)

    Google Scholar 

  18. Guan, X., Yang, H.-J., Meng, X.-K., Liu, W.-J.: Higher-order rogue waves solutions of the modified Gerdjikov–Ivanov equation with dispersion via generalized Darboux transformation. Appl. Math. Lett. 136, 108466 (2023)

    MathSciNet  Google Scholar 

  19. Nakamura, A., Chen, H.-H.: Multi-soliton solutions of a derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 49, 813–816 (1980)

    ADS  Google Scholar 

  20. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    ADS  CAS  Google Scholar 

  21. Zhang, Y., Guo, L., He, J., Zhou, Z.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    ADS  MathSciNet  Google Scholar 

  22. Xu, M.-J., Xia, T.-C., Hu, B.-B.: Riemann–Hilbert approach and N-soliton solutions for the Chen–Lee–Liu equation. Mod. Phys. Lett. B 33, 1950002 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  23. Qiu, D.: Riemann–Hilbert approach and N-soliton solution for the Chen–Lee–Liu equation. Eur. Phys. J. Plus 136, 825 (2021)

    Google Scholar 

  24. Lee, J.-H., Lin, C.-K.: The behaviour of solutions of NLS equation of derivative type in the semiclassical limit. Chaos Solitons Fractals 13, 1475–1492 (2002)

    ADS  MathSciNet  Google Scholar 

  25. Tsuchida, T., Wadati, M.: New integrable systems of derivative nonlinear Schrödinger equations with multiple components. Phys. Lett. A 257, 53–64 (1999)

    ADS  MathSciNet  CAS  Google Scholar 

  26. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    ADS  Google Scholar 

  27. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    Google Scholar 

  28. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  29. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems, 1st edn. Cambridge University Press, Cambirdge (2003)

    Google Scholar 

  30. Liu, N., Guo, B.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by Riemann-Hilbert approach. Nonlinear Dyn. 100, 629–646 (2020)

    Google Scholar 

  31. Guo, N., Xu, J., Wen, L., Fan, E.: Rogue wave and multi-pole solutions for the focusing Kundu-Eckhaus Equation with nonzero background via Riemann-Hilbert problem method. Nonlinear Dyn. 103, 1851–1868 (2021)

  32. Xu, M., Liu, N., Guo, C.: The multi-soliton and multiple-poles soliton solutions for the six-order nonlinear Schrödinger equation. Nonlinear Dyn. 105, 1741–1751 (2021)

    Google Scholar 

  33. Zhang, Y., Wang, N., Qiu, D., He, J.: Explicit solitons of Kundu equation derived by Riemann-Hilbert problem. Phys. Lett. A 452, 128476 (2022)

    MathSciNet  CAS  Google Scholar 

  34. Wu, J.: A novel general nonlocal reverse-time nonlinear Schrödinger equation and its soliton solutions by Riemann-Hilbert method. Nonlinear Dyn. 111, 16367–16376 (2023)

    Google Scholar 

  35. Zhang, G., He, J., Cheng, Y.: Riemann-Hilbert approach and N double-pole solutions for the third-order flow equation of nonlinear derivative Schrödinger-type equation. Nonlinear Dyn. 111, 6677–6687 (2023)

    Google Scholar 

  36. Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Google Scholar 

  37. Zhang, R.-F., Li, M.-C., Yin, H.-M.: Rogue wave solutions and the bright and dark solitons of the \((3+1)\)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  38. Zhang, R., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex 34, 122–139 (2021)

    MathSciNet  Google Scholar 

  39. Zhang, R.-F., Li, M.-C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  40. Huang, N.-N.: Theory of Solitons and Method of Perturbations. Shanghai Scientific and Technological Education Publishing House, Shanghai (1996)

    Google Scholar 

  41. Zhang, Y., Qiu, D., He, J.: Explicit Nth order solutions of Fokas–Lenells equation based on revised Riemann-Hilbert approach. J. Math. Phys. 64, 053502 (2023)

    ADS  Google Scholar 

  42. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  43. Fan, E.-G.: Integrable System, Orthogonal Polynomial and Random Matrix: Riemann-Hilbert Approach. The Science Press, Beijing, China (2022)

    Google Scholar 

  44. Hu, J., Xu, J., Yu, G.-F.: Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation. J. Nonlinear Math. Phys. 25, 633 (2018)

    MathSciNet  Google Scholar 

  45. Ma, X.: Riemann-Hilbert approach for a higher-order Chen-Lee-Liu equation with high-order poles. Commun. Nonlinear Sci. Numer. Simul. 114, 106606 (2022)

    MathSciNet  Google Scholar 

  46. Hu, A., Li, M., He, J.: Dynamic of the smooth positons of the higher-order Chen-Lee-Liu equation. Nonlinear Dyn. 104, 4329–4338 (2021)

    Google Scholar 

  47. Lin, B., Zhang, Y.: The Riemann-Hilbert approach for the Chen-Lee-Liu equation with higher-order poles. Appl. Math. Lett. 149, 108916 (2024)

    MathSciNet  Google Scholar 

  48. Zhang, R.-F., Bilige, S., Liu, J.-G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2020)

  49. Zhang, R.-F., Li, M.-C., Albishari, M., Zheng, F.-C., Lan, Z.-Z.: Generalized lump solutions, classical lump solutions and rogue waves of the \((2+1)\)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  Google Scholar 

  50. Zhang, R.-F., Li, M.-C., Gan, J.-Y., Li, Q., Lan, Z.-Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractrals 154, 111692 (2022)

    MathSciNet  Google Scholar 

  51. Zhang, R.-F., Li, M.-C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12171433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshuai Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, B. The Riemann–Hilbert approach for the Chen–Lee–Liu equation and collisions of multiple solitons. Nonlinear Dyn 112, 3737–3748 (2024). https://doi.org/10.1007/s11071-023-09196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09196-x

Keywords

Navigation