Skip to main content
Log in

Flowing in discrete gravity models and Ward identities: a review

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Ward–Takahashi identities are nonperturbative relations between correlation functions and arising from symmetries in quantum and statistical fields theories, as Noether currents conservation for classical theories. Since their historical origin, these identities were considered to prove the exact relation between counter-terms to all order of the perturbative expansion. Recently they have been considered in relation with nonperturbative renormalization group aspects for some classes of quantum field theories namely tensorial group field theories and matrix models, both characterized by a specific non-locality in their interactions, and expected to provide discrete models for quantum gravity. In this review, we summarize the state of the art, focusing on the conceptual aspects rather than technical subtleties, and provide a unified reflection on this novel and promising way of investigation. We attached great importance to the pedagogy and the self-consistency of the presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that we missed a factor 2 in the computation of [127, 128, 135].

    $$\begin{aligned} \frac{\hbox {d}}{\hbox {d}p^2}\mathcal {A}_{2,p}\bigg \vert _{p=0}=-\frac{1}{Z^2k^2}\frac{\pi ^2}{1+\bar{m}^2}\left( 1+\frac{1}{1+\bar{m}^2} \right) \,.\ \end{aligned}$$
    (37)
  2. Note that however these corrections do not modify the result significantly.

  3. This argument, obviously is subordinated to our approximations.

  4. This condition may be refined, see [128], but this point has no consequence on our discussion.

  5. See [129,130,131,132,133] and references therein for an extended discussion, showing how this definition work in practical contexts, especially in the context of matrix field theory to define counter-terms for renormalization.

References

  1. C. Rovelli, Quantum Gravity. Scholarpedia 3(5), 7117 (2008). https://doi.org/10.4249/scholarpedia.7117

  2. J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874 (1994). https://doi.org/10.1103/PhysRevD.50.3874. arxiv:gr-qc/9405057

    Article  ADS  Google Scholar 

  3. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998). https://doi.org/10.1103/PhysRevD.57.971. arxiv:hep-th/9605030

    Article  ADS  MathSciNet  Google Scholar 

  4. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics

  5. J.H. Schwarz, Superstring theory. Phys. Rep. 89, 223 (1982). https://doi.org/10.1016/0370-1573(82)90087-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. P.A.M. Dirac, The geometrical nature of space and time. Stud. Nat. Sci. 5, 1 (1974). https://doi.org/10.1007/978-1-4684-2913-81

    Article  Google Scholar 

  7. B.S. DeWitt, R.W. Brehme, Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960). https://doi.org/10.1016/0003-4916(60)90030-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. B.S. DeWitt, Gravity. Adv. Space Sci. Technol. 6, 1 (1964)

    Article  Google Scholar 

  9. C. Rovelli, Loop quantum gravity and black hole physics. Helv. Phys. Acta 69, 582 (1996). arxiv:gr-qc/9608032

    ADS  MATH  Google Scholar 

  10. D. Oriti, Group field theory and simplicial quantum gravity. Class. Quantum Gravity 27, 145017 (2010). https://doi.org/10.1088/0264-9381/27/14/145017. arXiv:0902.3903 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. D. Oriti, Levels of spacetime emergence in quantum gravity. arXiv:1807.04875 [physics.hist-ph]

  12. A. Baratin, D. Oriti, Ten questions on Group Field Theory (and their tentative answers). J. Phys. Conf. Ser. 360, 012002 (2012). https://doi.org/10.1088/1742-6596/360/1/012002. arXiv:1112.3270 [gr-qc]

    Article  Google Scholar 

  13. D. Oriti, The Group field theory approach to quantum gravity: some recent results. AIP Conf. Proc. 1196(1), 209 (2009). https://doi.org/10.1063/1.3284386. arXiv:0912.2441 [hep-th]

    Article  ADS  Google Scholar 

  14. R. Penrose, M.A.H. MacCallum, Twistor theory: an approach to the quantization of fields and space-time. Phys. Rep. 6, 241 (1972). https://doi.org/10.1016/0370-1573(73)90008-2

    Article  ADS  Google Scholar 

  15. J. Ambjorn, Z. Burda, J. Jurkiewicz, C.F. Kristjansen, Quantum gravity represented as dynamical triangulations. Acta Phys. Polon. B 23, 991 (1992)

    Google Scholar 

  16. J. Ambjorn, Quantum gravity represented as dynamical triangulations. Class. Quantum Gravity 12, 2079 (1995). https://doi.org/10.1088/0264-9381/12/9/002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J. Ambjørn, A. Görlich, J. Jurkiewicz, R. Loll, Quantum Gravity via Causal Dynamical Triangulations. https://doi.org/10.1007/978-3-642-41992-8-34arXiv:1302.2173 [hep-th]

  18. A. Eichhorn, An asymptotically safe guide to quantum gravity and matter. Front. Astron. Space Sci. 5, 47 (2019). https://doi.org/10.3389/fspas.2018.00047. arXiv:1810.07615 [hep-th]

    Article  ADS  Google Scholar 

  19. C. Rovelli, L. Smolin, Spin networks and quantum gravity. Phys. Rev. D 52, 5743 (1995). https://doi.org/10.1103/PhysRevD.52.5743. arxiv:gr-qc/9505006

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981). https://doi.org/10.1016/0550-3213(81)90006-7

    Article  ADS  MATH  Google Scholar 

  21. E. Witten, Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986). https://doi.org/10.1016/0550-3213(86)90155-0

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety. https://doi.org/10.1142/10369

  23. M. Reuter, F. Saueressig, Quantum Gravity and the Functional Renormalization Group : The Road towards Asymptotic Safety

  24. D. Anselmi, M. Piva, The ultraviolet behavior of quantum gravity. JHEP 1805, 027 (2018). https://doi.org/10.1007/JHEP05(2018)027. arXiv:1803.07777 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. I. Basile, A. Platania, Cosmological \(\alpha ^{\prime }\)-corrections from the functional renormalization group. JHEP 21, 045 (2020). https://doi.org/10.1007/JHEP06(2021)045. arXiv:2101.02226 [hep-th]

    Article  Google Scholar 

  26. H. W. Hamber, Quantum Gravitation: The Feynman Path Integral Approach. https://doi.org/10.1007/978-3-540-85293-3

  27. G. Chirco, A. Goeßmann, D. Oriti, M. Zhang, Group Field Theory and Holographic Tensor Networks: Dynamical Corrections to the Ryu-Takayanagi formula. arXiv:1903.07344 [hep-th]

  28. A. Ashtekar, M. Reuter, C. Rovelli, From General Relativity to Quantum Gravity. arXiv:1408.4336 [gr-qc]

  29. C. Rovelli, Loop quantum gravity. Living Rev. Relativ. 1, 1 (1998). https://doi.org/10.12942/lrr-1998-1. arxiv:gr-qc/9710008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C. Rovelli, P. Upadhya, Loop quantum gravity and quanta of space: A Primer. gr-qc/9806079

  31. C. Rovelli, Zakopane lectures on loop gravity. PoS QGQGS 2011, 003 (2011). arXiv:1102.3660 [gr-qc]

  32. C. Rovelli, Loop quantum gravity: the first twenty five years. Class. Quantum Gravity 28, 2079 (2011). https://doi.org/10.1088/0264-9381/28/15/153002. arXiv:1012.4707 [gr-qc]

    Article  Google Scholar 

  33. A. Connes, J. Lott, Particle models and noncommutative geometry (expanded version). Nucl. Phys. Proc. Suppl. 18B, 29 (1991). https://doi.org/10.1016/0920-5632(91)90120-4

    Article  ADS  MATH  Google Scholar 

  34. J. Aastrup, J.M. Grimstrup, Intersecting connes noncommutative geometry with quantum gravity. Int. J. Mod. Phys. A 22, 1589 (2007). https://doi.org/10.1142/S0217751X07035306. arxiv:hep-th/0601127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. A. Perez, Spin foam quantization of SO(4) Plebanski’s action, Adv. Theor. Math. Phys. 5, 947 (2002) Erratum: [Adv. Theor. Math. Phys. 6, 593 (2003)] https://doi.org/10.4310/ATMP.2001.v5.n5.a4, https://doi.org/10.4310/ATMP.2002.v6.n3.e1arxiv:gr-qc/0203058

  36. D. Oriti, Generalised group field theories and quantum gravity transition amplitudes. Phys. Rev. D 73, 061502 (2006). https://doi.org/10.1103/PhysRevD.73.061502. arxiv:gr-qc/0512069

    Article  ADS  MathSciNet  Google Scholar 

  37. L. Freidel, D. Oriti, J. Ryan, A Group field theory for 3-D quantum gravity coupled to a scalar field. arxiv:gr-qc/0506067

  38. D. Oriti, A quantum field theory of simplicial geometry and the emergence of spacetime. J. Phys. Conf. Ser. 67, 012052 (2007). https://doi.org/10.1088/1742-6596/67/1/012052. arxiv:hep-th/0612301

    Article  Google Scholar 

  39. D. Oriti, The Group field theory approach to quantum gravity, in Oriti, D. (ed.) Approaches to quantum gravity, pp. 310–331. arxiv:gr-qc/0607032

  40. M. de Cesare, A.G.A. Pithis, M. Sakellariadou, Cosmological implications of interacting Group Field Theory models: cyclic Universe and accelerated expansion. Phys. Rev. D 94, no. 6, 064051 (2016). https://doi.org/10.1103/PhysRevD.94.064051. arXiv:1606.00352 [gr-qc]

    Article  MathSciNet  Google Scholar 

  41. S. Gielen, L. Sindoni, Quantum cosmology from group field theory condensates: a review. SIGMA 12, 082 (2016). https://doi.org/10.3842/SIGMA.2016.082. arXiv:1602.08104 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Gielen, D. Oriti, Cosmological perturbations from full quantum gravity. arXiv:1709.01095 [gr-qc]

  43. S. Gielen, D. Oriti, Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics. New J. Phys. 16(12), 123004 (2014). https://doi.org/10.1088/1367-2630/16/12/123004. arXiv:1407.8167 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S. Gielen, D. Oriti, L. Sindoni, Homogeneous cosmologies as group field theory condensates. JHEP 1406, 013 (2014). https://doi.org/10.1007/JHEP06(2014)013. arXiv:1311.1238 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Gielen, Inhomogeneous universe from group field theory condensate. JCAP 1902, 013 (2019). https://doi.org/10.1088/1475-7516/2019/02/013. arXiv:1811.10639 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  46. M.L. Mandrysz, J. Mielczarek, Ultralocal nature of geometrogenesis. Class. Quantum Gravity 36(1), 015004 (2019). https://doi.org/10.1088/1361-6382/aaef71. arXiv:1804.10793 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. D. Oriti, Disappearance and emergence of space and time in quantum gravity. Stud. Hist. Philos. Sci. B 46, 186 (2014). https://doi.org/10.1016/j.shpsb.2013.10.006. arXiv:1302.2849 [physics.hist-ph]

    Article  MathSciNet  MATH  Google Scholar 

  48. J.M. Bardeen, B. Carter, S.W. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973). https://doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)]. https://doi.org/10.1007/BF02345020,https://doi.org/10.1007/BF01608497

  50. G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977). https://doi.org/10.1103/PhysRevD.15.2738

    Article  ADS  MathSciNet  Google Scholar 

  51. D. Colosi, C. Rovelli, What is a particle? Class. Quantum Gravity 26, 025002 (2009). https://doi.org/10.1088/0264-9381/26/2/025002. arxiv:gr-qc/0409054

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. H. Ooguri, Schwinger-Dyson equation in three-dimensional simplicial quantum gravity. Prog. Theor. Phys. 89, 1 (1993). https://doi.org/10.1143/PTP.89.1. arxiv:hep-th/9210028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. D.V. Boulatov, A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992). https://doi.org/10.1142/S0217732392001324. arxiv:hep-th/9202074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. E. Witten, Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243 (1991). https://doi.org/10.4310/SDG.1990.v1.n1.a5

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Brezin, J. Zinn-Justin, Renormalization group approach to matrix models. Phys. Lett. B 288, 54 (1992). https://doi.org/10.1016/0370-2693(92)91953-7. arxiv:hep-th/9206035

    Article  ADS  MathSciNet  Google Scholar 

  56. P. Di Francesco, P.H. Ginsparg, J. Zinn-Justin, 2-D gravity and random matrices. Phys. Rep. 254, 1 (1995). https://doi.org/10.1016/0370-1573(94)00084-G. arxiv:hep-th/9306153

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Higuchi, C. Itoi, N. Sakai, Renormalization group approach to matrix models and vector models. Prog. Theor. Phys. Suppl. 114, 53 (1993). https://doi.org/10.1143/PTPS.114.53. arxiv:hep-th/9307154

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Zinn-Justin, Random vector and matrix and vector theories: a renormalization group approach. J. Stat. Phys. 157, 990 (2014). https://doi.org/10.1007/s10955-014-1103-y. arXiv:1410.1635 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  59. I.R. Klebanov, A. Hashimoto, Nonperturbative solution of matrix models modified by trace squared terms. Nucl. Phys. B 434, 264 (1995). https://doi.org/10.1016/0550-3213(94)00518-J. arxiv:hep-th/9409064

    Article  ADS  MATH  Google Scholar 

  60. B. Duplantier, I.K. Kostov, Geometrical critical phenomena on a random surface of arbitrary genus. Nucl. Phys. B 340, 491 (1990). https://doi.org/10.1016/0550-3213(90)90456-N

    Article  ADS  MathSciNet  Google Scholar 

  61. J. Ambjorn, J. Greensite, Nonperturbative calculation of correlators in 2-D quantum gravity. Phys. Lett. B 254, 66 (1991). https://doi.org/10.1016/0370-2693(91)90397-9

    Article  ADS  Google Scholar 

  62. D.J. Gross, A.A. Migdal, A nonperturbative treatment of two-dimensional quantum gravity. Nucl. Phys. B 340, 333 (1990). https://doi.org/10.1016/0550-3213(90)90450-R

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. P. H. Ginsparg, G. W. Moore, Lectures on 2-D gravity and 2-D string theory, Yale Univ. New Haven - YCTP-P23-92 (92,rec.Apr.93) 197 p. Los Alamos Nat. Lab. - LA-UR-92-3479 (92,rec.Apr.93) 197 p. e: LANL hep-th/9304011. arxiv:hep-th/9304011

  64. M. Marino, Les Houches lectures on matrix models and topological strings. hep-th/0410165

  65. J.L. Gervais, Solving the strongly coupled 2-D gravity: 1. Unitary truncation and quantum group structure. Commun. Math. Phys. 138, 301 (1991). https://doi.org/10.1007/BF02099495

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. M.J. Bowick, E. Brezin, Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268, 21 (1991). https://doi.org/10.1016/0370-2693(91)90916-E

    Article  ADS  MathSciNet  Google Scholar 

  67. S. Dalley, C.V. Johnson, T.R. Morris, Multicritical complex matrix models and nonperturbative 2-D quantum gravity. Nucl. Phys. B 368, 625 (1992). https://doi.org/10.1016/0550-3213(92)90217-Y

    Article  ADS  MathSciNet  Google Scholar 

  68. J. Ambjorn, L. Chekhov, C.F. Kristjansen, Y. Makeenko, Matrix model calculations beyond the spherical limit, Nucl. Phys. B 404, 127 (1993) Erratum: [Nucl. Phys. B 449, 681 (1995)] :https://doi.org/10.1016/0550-3213(93)90476-6, https://doi.org/10.1016/0550-3213(95)00391-5arxiv:hep-th/9302014

  69. J. Ambjorn, J. Jurkiewicz, C.F. Kristjansen, Quantum gravity, dynamical triangulations and higher derivative regularization. Nucl. Phys. B 393, 601 (1993). https://doi.org/10.1016/0550-3213(93)90075-Z. arxiv:hep-th/9208032

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. S. Higuchi, C. Itoi, S. Nishigaki, N. Sakai, Renormalization group flow in one and two matrix models, Nucl. Phys. B 434, 283 (1995) Erratum: [Nucl. Phys. B 441, 405 (1995)] https://doi.org/10.1016/0550-3213(95)00119-D, https://doi.org/10.1016/0550-3213(94)00437-Jarxiv:hep-th/9409009

  71. L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order partial**4. Phys. Rev. B 68, 064421 (2003). https://doi.org/10.1103/PhysRevB.68.064421. arxiv:hep-th/0302227

    Article  ADS  Google Scholar 

  72. J. Ambjorn, J. Jurkiewicz, S. Varsted, A. Irback, B. Petersson, Critical properties of the dynamical random surface with extrinsic curvature. Phys. Lett. B 275, 295 (1992). https://doi.org/10.1016/0370-2693(92)91593-X

    Article  ADS  MathSciNet  Google Scholar 

  73. J. Alfaro, P.H. Damgaard, The D = 1 matrix model and the renormalization group. Phys. Lett. B 289, 342 (1992). https://doi.org/10.1016/0370-2693(92)91229-3. arxiv:hep-th/9206099

    Article  ADS  MathSciNet  Google Scholar 

  74. K. Itoh, Gauge symmetry and the functional renormalization group. Int. J. Mod. Phys. A 32(35), 1747011 (2017). https://doi.org/10.1142/S0217751X1747011X

    Article  ADS  MATH  Google Scholar 

  75. H.B. Gao, On renormalization group flow in matrix model. arxiv:hep-th/9209089

  76. C. Ayala, Renormalization group approach to matrix models in two-dimensional quantum gravity. Phys. Lett. B 311, 55 (1993). https://doi.org/10.1016/0370-2693(93)90533-N. arxiv:hep-th/9304090

    Article  ADS  MathSciNet  Google Scholar 

  77. A. Eichhorn, T. Koslowski, Continuum limit in matrix models for quantum gravity from the Functional Renormalization Group. Phys. Rev. D 88, 084016 (2013). https://doi.org/10.1103/PhysRevD.88.084016. arXiv:1309.1690 [gr-qc]

    Article  ADS  Google Scholar 

  78. A. Eichhorn, T. Koslowski, Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group. Phys. Rev. D 90(10), 104039 (2014). https://doi.org/10.1103/PhysRevD.90.104039. arXiv:1408.4127 [gr-qc]

    Article  ADS  Google Scholar 

  79. A. Eichhorn, J. Lumma, A.D. Pereira, A. Sikandar, Universal critical behavior in tensor models for four-dimensional quantum gravity. arXiv:1912.05314 [gr-qc]

  80. A. Eichhorn, T. Koslowski, A.D. Pereira, Status of background-independent coarse-graining in tensor models for quantum gravity. Universe 5(2), 53 (2019). https://doi.org/10.3390/universe5020053. arXiv:1811.12909 [gr-qc]

    Article  ADS  Google Scholar 

  81. A. Eichhorn, T. Koslowski, Flowing to the continuum in discrete tensor models for quantum gravity. Ann. Inst. H. Poincare Comb. Phys. Interact. 5(2), 173 (2018). https://doi.org/10.4171/AIHPD/52. arXiv:1701.03029 [gr-qc]

    Article  MATH  Google Scholar 

  82. A. Eichhorn, A.D. Pereira, A.G.A. Pithis, The phase diagram of the multi-matrix model with ABAB-interaction from functional renormalization. JHEP 12, 131 (2020). https://doi.org/10.1007/JHEP12(2020)131. arXiv:2009.05111 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. C.I. Perez-Sanchez, Comment on the phase diagram of the multi-matrix model with ABAB-interaction from functional renormalization. JHEP 21, 042 (2020). https://doi.org/10.1007/JHEP07(2021)042. arXiv:2102.06999 [hep-th]

    Article  Google Scholar 

  84. V. Lahoche, D. Ousmane Samary, Revisited functional renormalization group approach for random matrices in the large-\(N\) limit. Phys. Rev. D 101(10), 106015 (2020). https://doi.org/10.1103/PhysRevD.101.106015. arXiv:1909.03327 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. V. Lahoche, D.O. Samary, Reliability of the local truncations for the random tensor models renormalization group flow. Phys. Rev. D 102(5), 056002 (2020). https://doi.org/10.1103/PhysRevD.102.056002. arXiv:2005.11846 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  86. D. Stanford, E. Witten, JT gravity and the ensembles of random matrix theory. arXiv:1907.03363 [hep-th]

  87. B. Duplantier, S. Sheffield, Duality and KPZ in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009). https://doi.org/10.1103/PhysRevLett.102.150603. arXiv:0901.0277 [math-ph]

    Article  ADS  MathSciNet  Google Scholar 

  88. B. Duplantier, S. Sheffield, Liouville quantum gravity and KPZ. arXiv:0808.1560 [math-ph]

  89. J. Ben Geloun, V. Bonzom, Radiative corrections in the Boulatov–Ooguri tensor model: the 2-point function. Int. J. Theor. Phys. 50, 2819 (2011). https://doi.org/10.1007/s10773-011-0782-2. arXiv:1101.4294 [hep-th]

    Article  MATH  Google Scholar 

  90. V. Rivasseau, The tensor track. III. Fortsch. Phys. 62, 81 (2014). https://doi.org/10.1002/prop.201300032. arXiv:1311.1461 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. V. Rivasseau, The tensor track: an update. arXiv:1209.5284 [hep-th]

  92. V. Rivasseau, The tensor theory space. Fortsch. Phys. 62, 835 (2014). https://doi.org/10.1002/prop.201400057. arXiv:1407.0284 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. L. Freidel, R. Gurau, D. Oriti, Group field theory renormalization—the 3d case: power counting of divergences. Phys. Rev. D 80, 044007 (2009). https://doi.org/10.1103/PhysRevD.80.044007. arXiv:0905.3772 [hep-th]

    Article  ADS  Google Scholar 

  94. S. Carrozza, D. Oriti, V. Rivasseau, Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. Commun. Math. Phys. 327, 603 (2014). https://doi.org/10.1007/s00220-014-1954-8. arXiv:1207.6734 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. S. Carrozza, Tensorial methods and renormalization in Group Field Theories. https://doi.org/10.1007/978-3-319-05867-2arXiv:1310.3736 [hep-th]

  96. S. Carrozza, D. Oriti, V. Rivasseau, Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581 (2014). https://doi.org/10.1007/s00220-014-1928-x. arXiv:1303.6772 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. J. Ben Geloun, Renormalizable models in rank \(dge 2\) tensorial group field theory. Commun. Math. Phys. 332, 117 (2014). https://doi.org/10.1007/s00220-014-2142-6. arXiv:1306.1201 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. V. Lahoche, D. Oriti, Renormalization of a tensorial field theory on the homogeneous space SU(2)/U(1). J. Phys. A 50(2), 025201 (2017). https://doi.org/10.1088/1751-8113/50/2/025201. arXiv:1506.08393 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. V. Lahoche, D. Oriti, V. Rivasseau, Renormalization of an Abelian tensor group field theory: solution at leading order. JHEP 1504, 095 (2015). https://doi.org/10.1007/JHEP04(2015)095. arXiv:1501.02086 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. J. Ben Geloun, E.R. Livine, Some classes of renormalizable tensor models. J. Math. Phys. 54, 082303 (2013). https://doi.org/10.1063/1.4818797

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. D. Ousmane Samary, F. Vignes-Tourneret, Just renormalizable TGFT’s on \(U(1)^{d}\) with gauge invariance, Commun. Math. Phys. 329, 545 (2014). https://doi.org/10.1007/s00220-014-1930-3. arXiv:1211.2618 [hep-th]

  102. D. Ousmane Samary, Beta functions of \(U(1)^d\) gauge invariant just renormalizable tensor models. Phys. Rev. D 88(10), 105003 (2013). https://doi.org/10.1103/PhysRevD.88.105003. arXiv:1303.7256 [hep-th]

    Article  ADS  Google Scholar 

  103. J. Ben Geloun, D. Ousmane Samary, 3D tensor field theory: renormalization and one-loop \(\beta \)-functions. Ann. Henri Poincare 14, 1599 (2013). https://doi.org/10.1007/s00023-012-0225-5. arXiv:1201.0176 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. J. Ben Geloun, V. Rivasseau, A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013). https://doi.org/10.1007/s00220-012-1549-1. arXiv:1111.4997 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. V. Rivasseau, F. Vignes-Tourneret, Constructive tensor field theory: the \(T^{4}_{4}\) model. arXiv:1703.06510 [math-ph]

  106. N. Delporte, V. Rivasseau, Perturbative quantum field theory on random trees. arXiv:1905.12783 [hep-th]

  107. T. Delepouve, V. Rivasseau, Commun. Math. Phys. 345(2), 477 (2016). https://doi.org/10.1007/s00220-016-2680-1. arXiv:1412.5091 [math-ph]

    Article  ADS  Google Scholar 

  108. L. Lionni, V. Rivasseau, Intermediate field representation for positive matrix and tensor interactions. arXiv:1609.05018 [math-ph]

  109. R. Gurau, Colored group field theory. Commun. Math. Phys. 304, 69 (2011). https://doi.org/10.1007/s00220-011-1226-9. arXiv:0907.2582 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. N. Delporte, V. Rivasseau, The tensor track V. Holographic tensors. arXiv:1804.11101 [hep-th]

  111. R. Gurau, Notes on tensor models and tensor field theories. arXiv:1907.03531 [hep-th]

  112. R. Gurau, V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension. EPL 95(5), 50004 (2011). https://doi.org/10.1209/0295-5075/95/50004. arXiv:1101.4182 [gr-qc]

    Article  ADS  Google Scholar 

  113. R. Gurau, The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973 (2014). https://doi.org/10.1007/s00220-014-1907-2. arXiv:1304.2666 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. R. Gurau, J.P. Ryan, Colored tensor models—a review. SIGMA 8, 020 (2012). https://doi.org/10.3842/SIGMA.2012.020. arXiv:1109.4812 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  115. R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincare 13, 399 (2012). https://doi.org/10.1007/s00023-011-0118-z. arXiv:1102.5759 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. G. Calcagni, D. Oriti, J. Thürigen, Spectral dimension of quantum geometries. Class. Quantum Gravity 31, 135014 (2014). https://doi.org/10.1088/0264-9381/31/13/135014. arXiv:1311.3340 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  117. S. Dartois, R. Gurau, V. Rivasseau, Double scaling in tensor models with a quartic interaction. JHEP 1309, 088 (2013). https://doi.org/10.1007/JHEP09(2013)088. arXiv:1307.5281 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011). https://doi.org/10.1016/j.nuclphysb.2011.07.022. arXiv:1105.3122 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. S. Dartois, O. Evnin, L. Lionni, V. Rivasseau, G. Valette, Melonic turbulence. arXiv:1810.01848 [math-ph]

  120. P. Diaz, Backgrounds from tensor models: a proposal. Phys. Rev. D 103(6), 066010 (2021). https://doi.org/10.1103/PhysRevD.103.066010. arXiv:2009.00623 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  121. S. Carrozza, Discrete renormalization group for SU(2) tensorial group field theory. Ann. Inst. H. Poincare Comb. Phys. Interact. 2, 49 (2015). https://doi.org/10.4171/AIHPD/15. arXiv:1407.4615 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  122. S. Carrozza, Group field theory in dimension \(4-epsilon \). Phys. Rev. D 91(6), 065023 (2015). https://doi.org/10.1103/PhysRevD.91.065023. arXiv:1411.5385 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  123. D. Benedetti, N. Delporte, S. Harribey, R. Sinha, Sextic tensor field theories in rank \(3\) and \(5\). arXiv:1912.06641 [hep-th]

  124. D. Benedetti, R. Gurau, S. Harribey, K. Suzuki, Hints of unitarity at large \(N\) in the \(O(N)^3\) tensor field theory. JHEP 2002, 072 (2020). https://doi.org/10.1007/JHEP02(2020)072. arXiv:1909.07767 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. D. Benedetti, R. Gurau, S. Harribey, Line of fixed points in a bosonic tensor model. JHEP 1906, 053 (2019). https://doi.org/10.1007/JHEP06(2019)053. arXiv:1903.03578 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  126. A. Patkos, Invariant formulation of the Functional Renormalisation Group method for \(U(n)\times U(n)\) symmetric matrix models. Mod. Phys. Lett. A 27, 1250212 (2012). https://doi.org/10.1142/S0217732312502124. arXiv:1210.6490 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  127. V. Lahoche, D. Ousmane Samary, Ward identity violation for melonic \(T^4\)-truncation. Nucl. Phys. B 940, 190 (2019). https://doi.org/10.1016/j.nuclphysb.2019.01.005. arXiv:1809.06081 [hep-th]

    Article  ADS  MATH  Google Scholar 

  128. V. Lahoche, D. Ousmane Samary, Nonperturbative renormalization group beyond the melonic sector: the effective vertex expansion method for group fields theories, Phys. Rev. D 98(12) (2018). https://doi.org/10.1103/PhysRevD.98.126010. arXiv:1809.00247 [hep-th]

  129. V. Lahoche, D. OusmaneSamary, Pedagogical comments about nonperturbative Ward-constrained melonic renormalization group flow. Phys. Rev. D 101, 024001 (2020). https://doi.org/10.1103/PhysRevD.2.1541

    Article  ADS  MathSciNet  Google Scholar 

  130. V. Lahoche, D. Ousmane Samary, A.D. Pereira, Renormalization group flow of coupled tensorial group field theories: towards the Ising model on random lattices. Phys. Rev. D 101(6), 064014 (2020). https://doi.org/10.1103/PhysRevD.101.064014. arXiv:1911.05173 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  131. V. Lahoche, D. Ousmane Samary, Large-\(d\) behavior of the Feynman amplitudes for a just-renormalizable tensorial group field theory. arXiv:1911.08601 [hep-th]

  132. V. Lahoche, D. Ousmane Samary, Ward-constrained melonic renormalization group flow. Phys. Lett. B 802, 135173 (2020). https://doi.org/10.1016/j.physletb.2019.135173. arXiv:1904.05655 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  133. V. Lahoche, D Ousmane Samary, Ward-constrained melonic renormalization group flow for the rank-four \(phi ^6\) tensorial group field theory. Phys. Rev. D 100(8), 086009 (2019). https://doi.org/10.1103/PhysRevD.100.086009. arXiv:1908.03910 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  134. V. Lahoche, D. Ousmane Samary, Progress in the solving nonperturbative renormalization group for tensorial group field theory. Universe 5, 86 (2019). https://doi.org/10.3390/universe5030086. arXiv:1812.00905 [hep-th]

    Article  ADS  MATH  Google Scholar 

  135. V. Lahoche, D. Ousmane Samary, Unitary symmetry constraints on tensorial group field theory renormalization group flow. Class. Quantum Gravity 35(19), 195006 (2018). https://doi.org/10.1088/1361-6382/aad83f. arXiv:1803.09902 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  136. J. Ben Geloun, Ward-Takahashi identities for the colored Boulatov model. J. Phys. A 44, 415402 (2011). https://doi.org/10.1088/1751-8113/44/41/415402. arXiv:1106.1847 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  137. H. Itoyama, A. Mironov, A. Morozov, Ward identities and combinatorics of rainbow tensor models. JHEP 1706, 115 (2017). https://doi.org/10.1007/JHEP06(2017)115. arXiv:1704.08648 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. D. Ousmane Samary, Closed equations of the two-point functions for tensorial group field theory. Class. Quantum Gravity 31, 185005 (2014). https://doi.org/10.1088/0264-9381/31/18/185005. arXiv:1401.2096 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  139. D. Ousmane Samary, C.I. Pérez-Sánchez, F. Vignes-Tourneret, R. Wulkenhaar, Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation. Class. Quantum Gravity 32(17), 175012 (2015). https://doi.org/10.1088/0264-9381/32/17/175012. arXiv:1411.7213 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  140. J. Ben Geloun, R. Martini, D. Oriti, Functional renormalisation group analysis of tensorial group field theories on \({mathbb{R}}^d\). Phys. Rev. D 94(2), 024017 (2016). https://doi.org/10.1103/PhysRevD.94.024017. arXiv:1601.08211 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  141. S. Carrozza, V. Lahoche, D. Oriti, Renormalizable Group Field Theory beyond melonic diagrams: an example in rank four. Phys. Rev. D 96(6), 066007 (2017). https://doi.org/10.1103/PhysRevD.96.066007. arXiv:1703.06729 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  142. V. Lahoche, D. Ousmane Samary, Functional renormalization group for the U(1)-T\(_5^6\) tensorial group field theory with closure constraint. Phys. Rev. D 95(4), 045013 (2017). https://doi.org/10.1103/PhysRevD.95.045013. arXiv:1608.00379 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  143. S. Carrozza, V. Lahoche, Asymptotic safety in three-dimensional SU(2) Group Field Theory: evidence in the local potential approximation. Class. Quantum Gravity 34(11), 115004 (2017). https://doi.org/10.1088/1361-6382/aa6d90. arXiv:1612.02452 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  144. C. Wetterich, The average action for scalar fields near phase transitions. Z. Phys. C 57, 451 (1993). https://doi.org/10.1007/BF01474340

    Article  ADS  Google Scholar 

  145. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993). https://doi.org/10.1016/0370-2693(93)90726-X. arXiv:1710.05815 [hep-th]

    Article  ADS  Google Scholar 

  146. D.F. Litim, Optimization of the exact renormalization group. Phys. Lett. B 486, 92 (2000). https://doi.org/10.1016/S0370-2693(00)00748-6. arxiv:hep-th/0005245

    Article  ADS  Google Scholar 

  147. D.F. Litim, Derivative expansion and renormalization group flows. JHEP 0111, 059 (2001). https://doi.org/10.1088/1126-6708/2001/11/059. arxiv:hep-th/0111159

    Article  ADS  MathSciNet  Google Scholar 

  148. B. Delamotte, An introduction to the nonperturbative renormalization group, Lect. Notes Phys. 852, 49 (2012). https://doi.org/10.1007/978-3-642-27320-9_2 [cond-mat/0702365 [cond-mat.stat-mech]]

  149. A. Sfondrini, T.A. Koslowski, Functional renormalization of noncommutative scalar field theory. Int. J. Mod. Phys. A 26, 4009 (2011). https://doi.org/10.1142/S0217751X11054048. arXiv:1006.5145 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  150. M. Safari, Splitting ward identity. Eur. Phys. J. C 76(4), 201 (2016). https://doi.org/10.1140/epjc/s10052-016-4036-6. arXiv:1508.06244 [hep-th]

    Article  ADS  Google Scholar 

  151. T.R. Morris, Large curvature and background scale independence in single-metric approximations to asymptotic safety. JHEP 1611, 160 (2016). https://doi.org/10.1007/JHEP11(2016)160. arXiv:1610.03081 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. J. Berges, N. Tetradis, C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002). https://doi.org/10.1016/S0370-1573(01)00098-9. arxiv:hep-ph/0005122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  153. H. Gies, C. Wetterich, Renormalization flow of bound states. Phys. Rev. D 65, 065001 (2002). https://doi.org/10.1103/PhysRevD.65.065001. arxiv:hep-th/0107221

    Article  ADS  MathSciNet  Google Scholar 

  154. F. Ferrari, F.I. Schaposnik Massolo, Phases of melonic quantum mechanics. Phys. Rev. D 100(2), 026007 (2019). https://doi.org/10.1103/PhysRevD.100.026007. arXiv:1903.06633 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  155. T. Delepouve, R. Gurau, Phase transition in tensor models. JHEP 1506, 178 (2015). https://doi.org/10.1007/JHEP06(2015)178. arXiv:1504.05745 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  156. J.M. Pawlowski, M.M. Scherer, R. Schmidt, S.J. Wetzel, Physics and the choice of regulators in functional renormalisation group flows. Ann. Phys. 384, 165 (2017). https://doi.org/10.1016/j.aop.2017.06.017. arXiv:1512.03598 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. R. Pascalie, C. I. P. Sánchez, R. Wulkenhaar, Correlation functions of \({{\rm U}}(N)\)-tensor models and their Schwinger–Dyson equations. arXiv:1706.07358 [math-ph]

  158. L. Canet, B. Delamotte, D. Mouhanna, J. Vidal, Optimization of the derivative expansion in the nonperturbative renormalization group. Phys. Rev. D 67, 065004 (2003). https://doi.org/10.1103/PhysRevD.67.065004. arxiv:hep-th/0211055

    Article  ADS  Google Scholar 

  159. J.C. Ward, An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950). https://doi.org/10.1103/PhysRev.78.182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Y. Takahashi, On the generalized Ward identity. Nuovo Cim. 6, 371 (1957). https://doi.org/10.1007/BF02832514

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. C. Wetterich, Nucl. Phys. B 931, 262 (2018). https://doi.org/10.1016/j.nuclphysb.2018.04.020. arXiv:1607.02989 [hep-th]

    Article  ADS  Google Scholar 

  162. H. Ooguri, N. Sasakura, Discrete and continuum approaches to three-dimensional quantum gravity. Mod. Phys. Lett. A 6, 3591 (1991). https://doi.org/10.1142/S0217732391004140. arxiv:hep-th/9108006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. N. Sasakura, Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991). https://doi.org/10.1142/S0217732391003055

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dine Ousmane Samary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ousmane Samary, D., Lahoche, V. & Baloïtcha, E. Flowing in discrete gravity models and Ward identities: a review. Eur. Phys. J. Plus 136, 982 (2021). https://doi.org/10.1140/epjp/s13360-021-01823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01823-z

Navigation