Skip to main content

Quantum Spacetime and the Renormalization Group: Progress and Visions

  • Conference paper
  • First Online:
Progress and Visions in Quantum Theory in View of Gravity

Abstract

The quest for a consistent theory which describes the quantum microstructure of spacetime seems to require some departure from the paradigms that have been followed in the construction of quantum theories for the other fundamental interactions. In this contribution we briefly review two approaches to quantum gravity, namely, asymptotically safe quantum gravity and tensor models, based on different theoretical assumptions. Nevertheless, the main goal is to find a universal continuum limit for such theories and we explain how coarse-graining techniques should be adapted to each case. Finally, we argue that although seemingly different, such approaches might be just two sides of the same coin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also the very recent results from the Event Horizon Telescope in [7], in very good agreement with GR predictions.

  2. 2.

    Of course, this assertion is restricted to path-integral approaches to quantum gravity.

  3. 3.

    This is very general and is not necessarily a cutoff in energy. As we will see in the case of tensor models, this parameter is associated to the size of the tensor being thus a dimensionless parameter.

  4. 4.

    When integrating the modes step by step in the path integral, one realizes that all terms compatible with the symmetries of the theory are generated in the effective action—apart from anomalies which we ignore in this article.

  5. 5.

    Oftenly, the asymptotically free fixed point is called Gaussian or non-interacting fixed point and the asymptotically safe one, non-Gaussian or interacting fixed point.

  6. 6.

    More precisely, it is spanned by canonically and marginally relevant couplings.

  7. 7.

    We restrict ourselves to the Euclidean path integral. The choice is for technical reasons. We should emphasize that establishing whether what is going to be presented remains valid in the Lorentzian setting is still a challenging open question.

  8. 8.

    This notation is not accurate. In fact, the metric g μν that enters as the argument of the effective average action corresponds to the expectation value of the metric g μν that appears in definition of the path integral (15). We employ the same name for both for simplicity.

References

  1. S. Chatrchyan et al. (CMS), Phys. Lett. B716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235 [hep-ex]

  2. M. Gell-Mann, F.E. Low, Phys. Rev. 95, 1300 (1954). https://doi.org/10.1103/PhysRev.95.1300

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Frohlich, Nucl. Phys. B200, 281 (1982). https://doi.org/10.1016/0550-3213(82)90088-8

    Article  ADS  Google Scholar 

  4. M. Gockeler, R. Horsley, V. Linke, P.E.L. Rakow, G. Schierholz, H. Stuben, Phys. Rev. Lett. 80, 4119 (1998). https://doi.org/10.1103/PhysRevLett.80.4119, arXiv:hep-th/9712244 [hep-th]

  5. H. Gies, J. Jaeckel, Phys. Rev. Lett. 93, 110405 (2004). https://doi.org/10.1103/PhysRevLett.93.110405, arXiv:hep-ph/0405183 [hep-ph]

  6. B.P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102, arXiv:1602.03837 [gr-qc]

  7. K. Akiyama et al. (Event Horizon Telescope), Astrophys. J. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

  8. D. Oriti, Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter (Cambridge University Press, Cambridge, 2009). http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521860451

    Book  Google Scholar 

  9. T.R. Morris, Prog. Theor. Phys. Suppl. 131, 395 (1998). https://doi.org/10.1143/PTPS.131.395, arXiv:hep-th/9802039 [hep-th]

  10. J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002). https://doi.org/10.1016/S0370-1573(01)00098-9, arXiv:hep-ph/0005122 [hep-ph]

  11. K. Aoki, Int. J. Mod. Phys. B14, 1249 (2000). https://doi.org/10.1016/S0217-9792(00)00092-3

  12. J.M. Pawlowski, Ann. Phys. 322, 2831 (2007). https://doi.org/10.1016/j.aop.2007.01.007, arXiv:hep-th/0512261 [hep-th]

  13. H. Gies, Lect. Notes Phys. 852, 287 (2012). https://doi.org/10.1007/978-3-642-27320-9_6, arXiv:hep-ph/0611146 [hep-ph]

  14. B. Delamotte, Lect. Notes Phys. 852, 49 (2012). https://doi.org/10.1007/978-3-642-27320-9_2, arXiv:cond-mat/0702365 [cond-mat.stat-mech]

  15. O.J. Rosten, Phys. Rep. 511, 177 (2012). https://doi.org/10.1016/j.physrep.2011.12.003, arXiv:1003.1366 [hep-th]

  16. C. Wetterich (2019). arXiv:1901.04741 [hep-th]

  17. R. Percacci, Proceedings of the 3rd International Conference on Time and Matter, TAM2010 (Budva, 2011), pp. 123–142. arXiv:1110.6389 [hep-th]

  18. M. Reuter, F. Saueressig, New J. Phys. 14, 055022 (2012). https://doi.org/10.1088/1367-2630/14/5/055022, arXiv:1202.2274 [hep-th]

  19. A. Eichhorn, Black Holes, Gravitational Waves and Spacetime Singularities (Rome, 2017). http://inspirehep.net/record/1623009/files/arXiv:1709.03696.pdf, arXiv:1709.03696 [gr-qc]

  20. R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety. 100 Years of General Relativity, vol. 3 (World Scientific, Singapore, 2017)

    Google Scholar 

  21. A. Eichhorn, (2018), arXiv:1810.07615 [hep-th]

  22. M. Reuter, F. Saueressig, Quantum Gravity and the Functional Renormalization Group (Cambridge University Press, Cambridge, 2019). https://www.cambridge.org/academic/ subjects/physics/theoretical-physics-and-mathematical-physics/quantum-gravity-and-functional- renormalization-group-road-towards-asymptotic-safety?format=HB&isbn=9781107107328

  23. M.Y. Kalmykov, Classical Quantum Gravity 12, 1401 (1995). https://doi.org/10.1088/0264-9381/12/6/007, arXiv:hep-th/9502152 [hep-th]

  24. M. Yu. Kalmykov, K.A. Kazakov, P.I. Pronin, K.V. Stepanyantz, Classical Quantum Gravity 15, 3777 (1998). https://doi.org/10.1088/0264-9381/15/12/008, arXiv:hep-th/9809169 [hep-th]

  25. A. Nink, Phys. Rev. D91, 044030 (2015). https://doi.org/10.1103/PhysRevD.91.044030, arXiv:1410.7816 [hep-th]

  26. H. Gies, B. Knorr, S. Lippoldt, Phys. Rev. D92, 084020 (2015). https://doi.org/10.1103/PhysRevD.92.084020, arXiv:1507.08859 [hep-th]

  27. N. Ohta, R. Percacci, A.D. Pereira, J. High Energy Phys. 6, 115 (2016). https://doi.org/10.1007/JHEP06(2016)115, arXiv:1605.00454 [hep-th]

  28. N. Ohta, R. Percacci, A.D. Pereira, Eur. Phys. J. C77, 611 (2017). https://doi.org/10.1140/epjc/s10052-017-5176-z, arXiv:1610.07991 [hep-th]

  29. J.D. Gonçalves, T. de Paula Netto, I.L. Shapiro, Phys. Rev. D97, 026015 (2018). https://doi.org/10.1103/PhysRevD.97.026015, arXiv:1712.03338 [hep-th]

  30. N. Ohta, R. Percacci, A.D. Pereira, Phys. Rev. D97, 104039 (2018). https://doi.org/10.1103/PhysRevD.97.104039, arXiv:1804.01608 [hep-th]

  31. G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz, M. Yamada, Phys. Rev. D98, 026027 (2018). https://doi.org/10.1103/PhysRevD.98.026027, arXiv:1805.09656 [hep-th]

  32. G. ’t Hooft, M.J.G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A20, 69 (1974)

    Google Scholar 

  33. S.M. Christensen, M.J. Duff, Nucl. Phys. B170, 480 (1980). https://doi.org/10.1016/0550-3213(80)90423-X

  34. M.H. Goroff, A. Sagnotti, Nucl. Phys. B266, 709 (1986). https://doi.org/10.1016/0550-3213(86)90193-8

    Article  ADS  Google Scholar 

  35. J.F. Donoghue, Phys. Rev. Lett. 72, 2996 (1994). https://doi.org/10.1103/PhysRevLett.72.2996, arXiv:gr-qc/9310024 [gr-qc]

  36. K.S. Stelle, Phys. Rev. D16, 953 (1977). https://doi.org/10.1103/PhysRevD.16.953

    ADS  Google Scholar 

  37. D. Anselmi, J. High Energy Phys. 6, 086 (2017). https://doi.org/10.1007/JHEP06(2017)086, arXiv:1704.07728 [hep-th]

  38. D. Anselmi, M. Piva, J. High Energy Phys. 05, 027 (2018). https://doi.org/10.1007/JHEP05(2018)027, arXiv:1803.07777 [hep-th]

  39. D. Anselmi, M. Piva, J. High Energy Phys. 11, 021 (2018). https://doi.org/10.1007/JHEP11(2018)021, arXiv:1806.03605 [hep-th]

  40. D. Anselmi (2018). https://doi.org/10.20944/preprints201811.0213.v1

  41. A. Salvio, Front. Phys. 6, 77 (2018). https://doi.org/10.3389/fphy.2018.00077, arXiv:1804.09944 [hep-th]

  42. L. Modesto, I.L. Shapiro, Phys. Lett. B755, 279 (2016). https://doi.org/10.1016/j.physletb.2016.02.021, arXiv:1512.07600 [hep-th]

  43. S. Weinberg, Chap. 16. in General Relativity, ed. by S.W. Hawking, W. Israel (1979)

    Google Scholar 

  44. M. Reuter, Phys. Rev. D57, 971 (1998). https://doi.org/10.1103/PhysRevD.57.971, arXiv:hep-th/9605030 [hep-th]

  45. A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324, 414 (2009). https://doi.org/10.1016/j.aop.2008.08.008, arXiv:0805.2909 [hep-th]

  46. K.G. Falls, D.F. Litim, J. Schröder, (2018). arXiv:1810.08550 [gr-qc]

  47. A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert, M. Schiffer (2018). https://doi.org/10.1016/j.physletb.2019.01.071, arXiv:1810.02828 [hep-th]

  48. M. Reuter, F. Saueressig, Phys. Rev. D65, 065016 (2002). https://doi.org/10.1103/PhysRevD.65.065016, arXiv:hep-th/0110054 [hep-th]

  49. D.F. Litim, Phys. Rev. Lett. 92, 201301 (2004). https://doi.org/10.1103/PhysRevLett.92.201301. arXiv:hep-th/0312114 [hep-th]

  50. A. Codello, R. Percacci, Phys. Rev. Lett. 97, 221301 (2006). https://doi.org/10.1103/PhysRevLett.97.221301, arXiv:hep-th/0607128 [hep-th]

  51. P.F. Machado, F. Saueressig, Phys. Rev. D77, 124045 (2008). https://doi.org/10.1103/PhysRevD.77.124045, arXiv:0712.0445 [hep-th]

  52. D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A24, 2233 (2009). https://doi.org/10.1142/S0217732309031521, arXiv:0901.2984 [hep-th]

  53. D. Benedetti, P.F. Machado, F. Saueressig, Nucl. Phys. B824, 168 (2010). https://doi.org/10.1016/j.nuclphysb.2009.08.023, arXiv:0902.4630 [hep-th]

  54. E. Manrique, M. Reuter, F. Saueressig, Ann. Phys. 326, 463 (2011). https://doi.org/10.1016/j.aop.2010.11.006, arXiv:1006.0099 [hep-th]

  55. E. Manrique, S. Rechenberger, F. Saueressig, Phys. Rev. Lett. 106, 251302 (2011). https://doi.org/10.1103/PhysRevLett.106.251302, arXiv:1102.5012 [hep-th]

  56. N. Christiansen, D.F. Litim, J.M. Pawlowski, A. Rodigast, Phys. Lett. B728, 114 (2014). https://doi.org/10.1016/j.physletb.2013.11.025, arXiv:1209.4038 [hep-th]

  57. K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, (2013). arXiv:1301.4191 [hep-th]

  58. D. Benedetti, Europhys. Lett. 102, 20007 (2013). https://doi.org/10.1209/0295-5075/102/20007, arXiv:1301.4422 [hep-th]

  59. A. Codello, G. D’Odorico, C. Pagani, Phys. Rev. D89, 081701 (2014). https://doi.org/10.1103/PhysRevD.89.081701, arXiv:1304.4777 [gr-qc]

  60. K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, Phys. Rev. D93, 104022 (2016). https://doi.org/10.1103/PhysRevD.93.104022, arXiv:1410.4815 [hep-th]

  61. N. Christiansen, B. Knorr, J.M. Pawlowski, A. Rodigast, Phys. Rev. D93, 044036 (2016). https://doi.org/10.1103/PhysRevD.93.044036, arXiv:1403.1232 [hep-th]

  62. N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski, M. Reichert, Phys. Rev. D92, 121501 (2015). https://doi.org/10.1103/PhysRevD.92.121501, arXiv:1506.07016 [hep-th]

  63. H. Gies, B. Knorr, S. Lippoldt, F. Saueressig, Phys. Rev. Lett. 116, 211302 (2016). https://doi.org/10.1103/PhysRevLett.116.211302, arXiv:1601.01800 [hep-th]

  64. J. Biemans, A. Platania, F. Saueressig, Phys. Rev. D95, 086013 (2017). https://doi.org/10.1103/PhysRevD.95.086013, arXiv:1609.04813 [hep-th]

  65. N. Christiansen (2016), arXiv:1612.06223 [hep-th]

  66. T. Denz, J.M. Pawlowski, M. Reichert, Eur. Phys. J. C78, 336 (2018). https://doi.org/10.1140/epjc/s10052-018-5806-0, arXiv:1612.07315 [hep-th]

  67. B. Knorr, S. Lippoldt, Phys. Rev. D96, 065020 (2017). https://doi.org/10.1103/PhysRevD.96.065020, arXiv:1707.01397 [hep-th]

  68. B. Knorr, Classical Quantum Gravity 35, 115005 (2018). https://doi.org/10.1088/1361-6382/aabaa0, arXiv:1710.07055 [hep-th]

  69. N. Christiansen, K. Falls, J.M. Pawlowski, M. Reichert, Phys. Rev. D97, 046007 (2018). https://doi.org/10.1103/PhysRevD.97.046007, arXiv:1711.09259 [hep-th]

  70. K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos, C. Rahmede, Phys. Rev. D97, 086006 (2018). https://doi.org/10.1103/PhysRevD.97.086006, arXiv:1801.00162 [hep-th]

  71. R. Percacci, D. Perini, Phys. Rev. D67, 081503 (2003). https://doi.org/10.1103/PhysRevD.67.081503, arXiv:hep-th/0207033 [hep-th]

  72. R. Percacci, D. Perini, Phys. Rev. D68, 044018 (2003). https://doi.org/10.1103/PhysRevD.68.044018, arXiv:hep-th/0304222 [hep-th]

  73. G. Narain, R. Percacci, Classical Quantum Gravity 27, 075001 (2010). https://doi.org/10.1088/0264-9381/27/7/075001, arXiv:0911.0386 [hep-th]

  74. O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Phys. Lett. B689, 90 (2010). https://doi.org/10.1016/j.physletb.2010.04.043, arXiv:0904.0938 [hep-th]

  75. A. Eichhorn, H. Gies, New J. Phys. 13, 125012 (2011). https://doi.org/10.1088/1367-2630/13/12/125012, arXiv:1104.5366 [hep-th]

  76. A. Eichhorn, Phys. Rev. D86, 105021 (2012). https://doi.org/10.1103/PhysRevD.86.105021, arXiv:1204.0965 [gr-qc]

  77. P. Dona, A. Eichhorn, R. Percacci, Phys. Rev. D89, 084035 (2014). https://doi.org/10.1103/PhysRevD.89.084035, arXiv:1311.2898 [hep-th]

  78. P. Dona, A. Eichhorn, R. Percacci, Can. J. Phys. 93, 988 (2015). https://doi.org/10.1139/cjp-2014-0574, arXiv:1410.4411 [gr-qc]

  79. P. Labus, R. Percacci, G.P. Vacca, Phys. Lett. B753, 274 (2016). https://doi.org/10.1016/j.physletb.2015.12.022, arXiv:1505.05393 [hep-th]

  80. K.-Y. Oda, M. Yamada, Classical Quantum Gravity 33, 125011 (2016). https://doi.org/10.1088/0264-9381/33/12/125011, arXiv:1510.03734 [hep-th]

  81. J. Meibohm, J.M. Pawlowski, M. Reichert, Phys. Rev. D93, 084035 (2016). https://doi.org/10.1103/PhysRevD.93.084035, arXiv:1510.07018 [hep-th]

  82. P. Dona, A. Eichhorn, P. Labus, R. Percacci, Phys. Rev. D93, 044049 (2016) [Erratum: Phys. Rev. D93(12), 129904 (2016)]. https://doi.org/10.1103/PhysRevD.93.129904;;10.1103/PhysRevD.93.044049, arXiv:1512.01589 [gr-qc]

  83. J. Meibohm, J.M. Pawlowski, Eur. Phys. J. C76, 285 (2016). https://doi.org/10.1140/epjc/s10052-016-4132-7, arXiv:1601.04597 [hep-th]

  84. A. Eichhorn, A. Held, J. M. Pawlowski, Phys. Rev. D94, 104027 (2016). https://doi.org/10.1103/PhysRevD.94.104027, arXiv:1604.02041 [hep-th]

  85. A. Eichhorn, S. Lippoldt, Phys. Lett. B767, 142 (2017). https://doi.org/10.1016/j.physletb.2017.01.064, arXiv:1611.05878 [gr-qc]

  86. J. Biemans, A. Platania, F. Saueressig, J. High Energy Phys. 5, 093 (2017). https://doi.org/10.1007/JHEP05(2017)093, arXiv:1702.06539 [hep-th]

  87. Y. Hamada, M. Yamada, J. High Energy Phys. 8, 070 (2017). https://doi.org/10.1007/JHEP08(2017)070, arXiv:1703.09033 [hep-th]

  88. N. Christiansen, A. Eichhorn, A. Held, Phys. Rev. D96, 084021 (2017). https://doi.org/10.1103/PhysRevD.96.084021, arXiv:1705.01858 [hep-th]

  89. A. Eichhorn, A. Held, Phys. Rev. D96, 086025 (2017). https://doi.org/10.1103/PhysRevD.96.086025, arXiv:1705.02342 [gr-qc]

  90. A. Eichhorn, S. Lippoldt, V. Skrinjar, Phys. Rev. D97, 026002 (2018). https://doi.org/10.1103/PhysRevD.97.026002, arXiv:1710.03005 [hep-th]

  91. N. Christiansen, D.F. Litim, J.M. Pawlowski, M. Reichert, Phys. Rev. D97, 106012 (2018). https://doi.org/10.1103/PhysRevD.97.106012, arXiv:1710.04669 [hep-th]

  92. A. Eichhorn, Y. Hamada, J. Lumma, M. Yamada, Phys. Rev. D97, 086004 (2018). https://doi.org/10.1103/PhysRevD.97.086004, arXiv:1712.00319 [hep-th]

  93. N. Alkofer, F. Saueressig, Ann. Phys. 396, 173 (2018). https://doi.org/10.1016/j.aop.2018.07.017, arXiv:1802.00498 [hep-th]

  94. A. Eichhorn, P. Labus, J.M. Pawlowski, M. Reichert, SciPost Phys. 5, 031 (2018). https://doi.org/10.21468/SciPostPhys.5.4.031, arXiv:1804.00012 [hep-th]

  95. A. Eichhorn, S. Lippoldt, M. Schiffer (2018). arXiv:1812.08782 [hep-th]

  96. J.M. Pawlowski, M. Reichert, C. Wetterich, M. Yamada (2018). arXiv:1811.11706 [hep-th]

  97. M. Shaposhnikov, C. Wetterich, Phys. Lett. B683, 196 (2010). https://doi.org/10.1016/j.physletb.2009.12.022, arXiv:0912.0208 [hep-th]

  98. A. Eichhorn, A. Held, C. Wetterich, Phys. Lett. B782, 198 (2018). https://doi.org/10.1016/j.physletb.2018.05.016, arXiv:1711.02949 [hep-th]

  99. A. Eichhorn, A. Held, Phys. Rev. Lett. 121, 151302 (2018). https://doi.org/10.1103/PhysRevLett.121.151302, arXiv:1803.04027 [hep-th]

  100. U. Harst, M. Reuter, J. High Energy Phys. 5, 119 (2011). https://doi.org/10.1007/JHEP05(2011)119, arXiv:1101.6007 [hep-th]

  101. N. Christiansen, A. Eichhorn, Phys. Lett. B770, 154 (2017). https://doi.org/10.1016/j.physletb.2017.04.047, arXiv:1702.07724 [hep-th]

  102. A. Eichhorn, F. Versteegen, J. High Energy Phys. 1, 030 (2018). https://doi.org/10.1007/JHEP01(2018)030, arXiv:1709.07252 [hep-th]

  103. C. Wetterich, M. Yamada, Phys. Lett. B770, 268 (2017). https://doi.org/10.1016/j.physletb.2017.04.049, arXiv:1612.03069 [hep-th]

  104. P. Di Francesco, P.H. Ginsparg, J. Zinn-Justin, Phys. Rep. 254, 1 (1995). https://doi.org/10.1016/0370-1573(94)00084-G, arXiv:hep-th/9306153 [hep-th]

  105. M.R. Douglas, S.H. Shenker, Nucl. Phys. B335, 635 (1990), [635 (1989)]. https://doi.org/10.1016/0550-3213(90)90522-F

  106. E. Brezin, V.A. Kazakov, Phys. Lett. B236, 144 (1990). https://doi.org/10.1016/0370-2693(90)90818-Q

  107. D.J. Gross, A.A. Migdal, Phys. Rev. Lett. 64, 127 (1990), [127 (1989)]. https://doi.org/10.1103/PhysRevLett.64.127

  108. D.J. Gross, A.A. Migdal, Nucl. Phys. B340, 333 (1990), [333 (1989)]. https://doi.org/10.1016/0550-3213(90)90450-R

  109. E. Brezin, J. Zinn-Justin, Phys. Lett. B288, 54 (1992). https://doi.org/10.1016/0370-2693(92)91953-7, arXiv:hep-th/9206035 [hep-th]

  110. A. Eichhorn, T. Koslowski, Phys. Rev. D88, 084016 (2013). https://doi.org/10.1103/PhysRevD.88.084016, arXiv:1309.1690 [gr-qc]

  111. A. Eichhorn, T. Koslowski, A.D. Pereira, Universe 5, 53 (2019). https://doi.org/10.3390/universe5020053, arXiv:1811.12909 [gr-qc]

  112. J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Phys. Rep. 519, 127 (2012). https://doi.org/10.1016/j.physrep.2012.03.007, arXiv:1203.3591 [hep-th]

  113. J. Ambjorn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 107, 211303 (2011). https://doi.org/10.1103/PhysRevLett.107.211303, arXiv:1108.3932 [hep-th]

  114. J. Ambjorn, S. Jordan, J. Jurkiewicz, R. Loll, Phys. Rev. D85, 124044 (2012). https://doi.org/10.1103/PhysRevD.85.124044, arXiv:1205.1229 [hep-th]

  115. J. Ambjorn, D. Coumbe, J. Gizbert-Studnicki, A. Gorlich, J. Jurkiewicz, Phys. Rev. D95, 124029 (2017). https://doi.org/10.1103/PhysRevD.95.124029, arXiv:1704.04373 [hep-lat]

  116. J. Laiho, S. Bassler, D. Coumbe, D. Du, J.T. Neelakanta, Phys. Rev. D96, 064015 (2017). https://doi.org/10.1103/PhysRevD.96.064015, arXiv:1604.02745 [hep-th]

  117. J. Ambjorn, B. Durhuus, T. Jonsson, Mod. Phys. Lett. A6, 1133 (1991). https://doi.org/10.1142/S0217732391001184

  118. N. Godfrey, M. Gross, Phys. Rev. D43, 1749 (1991). https://doi.org/10.1103/PhysRevD.43.R1749

  119. M. Gross, Nucl. Phys. Proc. Suppl. 25A, 144 (1992). https://doi.org/10.1016/S0920-5632(05)80015-5

  120. V. Rivasseau, Proceedings of the 8th International Conference on Progress in Theoretical Physics (ICPTP 2011). AIP Conference Proceedings, vol. 1444 (Constantine, 2012), p. 18. https://doi.org/10.1063/1.4715396, arXiv:1112.5104 [hep-th]

  121. R. Gurau, J.P. Ryan, SIGMA 8, 020 (2012). https://doi.org/10.3842/SIGMA.2012.020, arXiv:1109.4812 [hep-th]

  122. R. Gurau, SIGMA 12, 094 (2016). https://doi.org/10.3842/SIGMA.2016.094, arXiv:1609.06439 [hep-th]

  123. V. Bonzom, SIGMA 12, 073 (2016). https://doi.org/10.3842/SIGMA.2016.073, arXiv:1603.03570 [math-ph]

  124. R. Gurau, Ann. Henri Poincare 12, 829 (2011). https://doi.org/10.1007/s00023-011-0101-8, arXiv:1011.2726 [gr-qc]

  125. R. Gurau, V. Rivasseau, Europhys. Lett. 95, 50004 (2011). https://doi.org/10.1209/0295-5075/95/50004, arXiv:1101.4182 [gr-qc]

  126. R. Gurau, Commun. Math. Phys. 304, 69 (2011). https://doi.org/10.1007/s00220-011-1226-9, arXiv:0907.2582 [hep-th]

  127. R. Gurau, Ann. Henri Poincare 13, 399 (2012). https://doi.org/10.1007/s00023-011-0118-z, arXiv:1102.5759 [gr-qc]

  128. V. Bonzom, R. Gurau, V. Rivasseau, Phys. Rev. D85, 084037 (2012). https://doi.org/10.1103/PhysRevD.85.084037, arXiv:1202.3637 [hep-th]

  129. S. Carrozza, A. Tanasa, Lett. Math. Phys. 106, 1531 (2016). https://doi.org/10.1007/s11005-016-0879-x, arXiv:1512.06718 [math-ph]

  130. A. Eichhorn, T. Koslowski, Phys. Rev. D90, 104039 (2014). https://doi.org/10.1103/PhysRevD.90.104039, arXiv:1408.4127 [gr-qc]

  131. A. Eichhorn, T. Koslowski, J. Lumma, A.D. Pereira (2018). arXiv:1811.00814 [gr-qc]

  132. D. Benedetti, J. Ben Geloun, D. Oriti, J. High Energy Phys. 3, 084 (2015). https://doi.org/10.1007/JHEP03(2015)084, arXiv:1411.3180 [hep-th]

  133. D. Benedetti, V. Lahoche, Classical Quantum Gravity 33, 095003 (2016). https://doi.org/10.1088/0264-9381/33/9/095003, arXiv:1508.06384 [hep-th]

  134. J. Ben Geloun, R. Martini, D. Oriti, Europhys. Lett. 112, 31001 (2015). https://doi.org/10.1209/0295-5075/112/31001, arXiv:1508.01855 [hep-th]

  135. J. Ben Geloun, R. Martini, D. Oriti, Phys. Rev. D94, 024017 (2016). https://doi.org/10.1103/PhysRevD.94.024017, arXiv:1601.08211 [hep-th]

  136. S. Carrozza, SIGMA 12, 070 (2016). https://doi.org/10.3842/SIGMA.2016.070, arXiv:1603.01902 [gr-qc]

  137. V. Lahoche, D. Ousmane Samary, Phys. Rev. D95, 045013 (2017). https://doi.org/10.1103/PhysRevD.95.045013, arXiv:1608.00379 [hep-th]

  138. S. Carrozza, V. Lahoche, Classical Quantum Gravity 34, 115004 (2017). https://doi.org/10.1088/1361-6382/aa6d90, arXiv:1612.02452 [hep-th]

  139. S. Carrozza, V. Lahoche, D. Oriti, Phys. Rev. D96, 066007 (2017). https://doi.org/10.1103/PhysRevD.96.066007, arXiv:1703.06729 [gr-qc]

  140. J. Ben Geloun, T.A. Koslowski, D. Oriti, A.D. Pereira, Phys. Rev. D97, 126018 (2018). https://doi.org/10.1103/PhysRevD.97.126018, arXiv:1805.01619 [hep-th]

  141. V. Lahoche, D. Ousmane Samary, Classical Quantum Gravity 35, 195006 (2018). https://doi.org/10.1088/1361-6382/aad83f, arXiv:1803.09902 [hep-th]

  142. V. Lahoche, D. Ousmane Samary, Phys. Rev. D98, 126010 (2018). https://doi.org/10.1103/PhysRevD.98.126010, arXiv:1809.00247 [hep-th]

  143. V. Lahoche, D. Ousmane Samary, Nucl. Phys. B940, 190 (2019). https://doi.org/10.1016/j.nuclphysb.2019.01.005, arXiv:1809.06081 [hep-th]

  144. V. Lahoche, D.O. Samary, Universe 5, 86 (2019). https://doi.org/10.3390/universe5030086, arXiv:1812.00905 [hep-th]

  145. V. Lahoche, D.O. Samary (2019). arXiv:1904.05655 [hep-th]

  146. T. Krajewski, R. Toriumi, J. Phys. A49, 385401 (2016). https://doi.org/10.1088/1751-8113/49/38/385401, arXiv:1511.09084 [gr-qc]

  147. T. Krajewski, R. Toriumi, SIGMA 12, 068 (2016). https://doi.org/10.3842/SIGMA.2016.068, arXiv:1603.00172 [gr-qc]

  148. A. Eichhorn, Classical Quantum Gravity 35, 044001 (2018). https://doi.org/10.1088/1361-6382/aaa0a3, arXiv:1709.10419 [gr-qc]

  149. A. Eichhorn, Proceedings of the 9th International Conference on Spacetime—Matter–Quantum Mechanics: From Discrete Structures and Dynamics to Top-Down Causation (DICE2018) (Castiglioncello, 2019). arXiv:1902.00391 [gr-qc]

  150. J.M. Pawlowski, D. Stock, Phys. Rev. D98, 106008 (2018). https://doi.org/10.1103/PhysRevD.98.106008, arXiv:1807.10512 [hep-th]

  151. A. Adeifeoba, A. Eichhorn, A. Platania, Classical Quantum Gravity 35, 225007 (2018). https://doi.org/10.1088/1361-6382/aae6ef, arXiv:1808.03472 [gr-qc]

  152. A. Platania (2019). arXiv:1903.10411 [gr-qc]

  153. L. Bosma, B. Knorr, F. Saueressig (2019). arXiv:1904.04845 [hep-th]

  154. A. Bonanno, S.J. Gabriele Gionti, A. Platania, Classical Quantum Gravity 35, 065004 (2018). https://doi.org/10.1088/1361-6382/aaa535, arXiv:1710.06317 [gr-qc]

  155. G. Gubitosi, R. Ooijer, C. Ripken, F. Saueressig, J. Cosmol. Astropart. Phys. 1812, 004 (2018). https://doi.org/10.1088/1475-7516/2018/12/004, arXiv:1806.10147 [hep-th]

Download references

Acknowledgements

I would like to thank Astrid Eichhorn for many inspiring discussions on the topic and the organizers of the conference “Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics” in Leipzig (2018) for the invitation. This work was supported by the DFG through the grant Ei/1037-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira, A.D. (2020). Quantum Spacetime and the Renormalization Group: Progress and Visions. In: Finster, F., Giulini, D., Kleiner, J., Tolksdorf, J. (eds) Progress and Visions in Quantum Theory in View of Gravity. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-38941-3_3

Download citation

Publish with us

Policies and ethics