Skip to main content

Advertisement

Log in

Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, a parabolic trough solar collector with inner helical axial fins as a swirl generator is considered and analyzed. All the numerical outcomes are obtained by utilizing the finite volume method's commercial code, ANSYS Fluent 18.2. The discretization of turbulence kinetic energy, turbulence dissipation rate, and energy equations as well as the spatial momentum equation have been done by a second-order upwind scheme. Hybrid nanofluid is utilized as a working fluid. This work consists of two sectors. In the first one, the influence of hybrid nanofluid types and, in the next sector, the impact of the volume concentration of selected hybrid nanofluid on the turbulence thermal efficiency are appraised numerically. The two considered hybrid nanofluids here contain multi-wall carbon nanotubes–iron oxide/water and silver and graphene nanoparticles/water. Obtained results showed that utilizing hybrid nanofluids causes more heat exchange rate than pure water. Also, among the evaluated hybrid nanofluids, multi-wall carbon nanotubes/iron oxide indicated the highest thermal performance. At the lowest studied Re number (Re = 5000), multi-wall carbon nanotubes/iron oxide presented higher thermal performance than silver–graphene/pure water by about 9.66 and 13.68%, respectively. Moreover, the peak thermal performance belongs to the case with volume concentration equal to 4% (φnf,1 = φnf,2) by an 18.5% growth in thermal performance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A :

Area (m2)

C P :

Specific heat capacity [kJ/(kg K)]

D 1 :

Diameter of the inner tube (m)

D 2 :

Appendix diameter (m)

D 3 :

Diameter of the outer tube (m)

d :

Diameter as length scale (m)

f :

Darcy friction factor (nd)

G b :

Generation of turbulence kinetic energy due to buoyancy (J/kg)

G k :

Generation of turbulence kinetic energy due to the mean velocity gradients (J/kg)

g :

Gravity (m/s2])

h :

Heat transfer coefficient [W/(m2 K)]

k :

Thermal conductivity [W/(m K)]

L :

Length of the tube (m)

M t :

Turbulent Mach number (nd)

P :

Pressure (Pa)

S m :

Mass generation (kg/m3)

S h :

Heat generation (J/m3)

th:

Thickness (m)

t :

Time (second)

T :

Temperature (℃)

u :

Velocity (m s1)

Ag:

Silver

Fe3O4 :

Iron oxide

HEG:

Graphene

HTF:

Heat transfer fluid

MWCNT:

Multi-wall carbon nanotubes

PTSCs:

Parabolic trough solar collectors

VG:

Vortex generators

μ :

Viscosity (kg/m s)

ρ :

Density (kg/m3)

\(\overline{\overline{\tau }}\) :

Stress tensor (Pa)

σ :

Turbulent Prandtl number (nd)

\(\eta\) :

Thermal performance (nd)

α :

Helical angle (degree)

k :

Turbulent kinetic energy per unit mass (J/kg)

ε :

Energy dissipation rate per unit mass (W/kg)

\(\varphi\) :

Solid volume fraction (%)

Re:

Reynolds number, \({\text{Re}} = \frac{{{\mathcal{P}}ud}}{{\upmu }}\) (nd)

Pe:

Péclet number, \({\text{Pe}} = {\text{ Re*Pr}}\) (nd)

Pr:

Prandtl number, \({\text{Pr}} = \frac{{c_{p} {\upmu }}}{k}\) (nd)

Nu:

Nusselt number, \({\text{Nu}} = \frac{hd}{k}\) (nd)

0:

Reference

eff:

Effective

h:

Hydraulic

nf:

Nanofluids

m:

Average

ref:

Reference

References

  1. S.A. Berger, L. Talbot, L.S. Yao, Flow in curved pipes. Ann. Rev. Fluid Mech. 15(1), 461–512 (1983)

    Article  ADS  Google Scholar 

  2. S. Rashidi, N. Karimi, B. Sundén, O. Mahian, S. Harmand, Passive techniques to enhance heat transfer in various thermal systems. J. Therm. Anal. Calorim. 11, 1–4 (2020). https://doi.org/10.1007/s10973-020-09424-1

    Article  Google Scholar 

  3. H. Olfian, S.S.M. Ajarostaghi, M. Ebrahimnataj, Development on evacuated tube solar collectors: a review of the last decade results of using nanofluids. Sol. Energy 211, 265–282 (2020). https://doi.org/10.1016/j.solener.2020.09.056

    Article  ADS  Google Scholar 

  4. S. Rashidi, N.M. Zade, J.A. Esfahani, Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem. Eng. Process. 1(117), 27–37 (2017). https://doi.org/10.1016/j.cep.2017.03.013

    Article  Google Scholar 

  5. K. Kim, K.S. Lee, Frosting and defrosting characteristics of surface-treated louvered-fin heat exchangers: effects of fin pitch and experimental conditions. Int. J. Heat Mass Transf. 60, 505–511 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.036

    Article  Google Scholar 

  6. A. Hobbi, K. Siddiqui, Experimental study on the effect of heat transfer enhancement devices in flat-plate solar collectors. Int. J. Heat Mass Transf. 52(19–20), 4650–4658 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.018

    Article  Google Scholar 

  7. Y. Yan, Q. Li, C. Liu, A. Pierce, F. Lu, P. Lu, Numerical discovery and experimental confirmation of vortex ring generation by microramp vortex generator. Appl. Math. Model. 36(11), 5700–5708 (2012). https://doi.org/10.1016/j.apm.2012.01.015

    Article  Google Scholar 

  8. K.W. Tsai, K. Sivashanmugan, C.H. Lin, P.J. Tsai, S.C. Cheng, Y.C. Lan, T.Y. Chen, T.C. Wen, The size effect of silver nanocubes on gap-mode surface enhanced Raman scattering substrate. J. Taiwan Inst. Chem. Eng. 69, 146–150 (2016). https://doi.org/10.1016/j.jtice.2016.10.005

    Article  Google Scholar 

  9. H.S. Dizaji, S. Jafarmadar, S. Asaadi, Experimental exergy analysis for shell and tube heat exchanger made of corrugated shell and corrugated tube. Exp. Thermal Fluid Sci. 81, 475–481 (2017). https://doi.org/10.1016/j.expthermflusci.2016.09.007

    Article  Google Scholar 

  10. X. Tang, X. Dai, D. Zhu, Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int. J. Heat Mass Transf. 90, 523–541 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.068

    Article  Google Scholar 

  11. M. Awais, A.A. Bhuiyan, Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Thermal Science and Engineering Progress. 5, 524–545 (2018). https://doi.org/10.1016/j.tsep.2018.02.007

    Article  Google Scholar 

  12. Z.J. Jin, F.Q. Chen, Z.X. Gao, X.F. Gao, J.Y. Qian, Effects of pitch and corrugation depth on heat transfer characteristics in six-start spirally corrugated tube. Int. J. Heat Mass Transf. 108, 1011–1025 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.091

    Article  Google Scholar 

  13. K. Aroonrat, S. Wongwises, Condensation heat transfer and pressure drop characteristics of R-134a flowing through dimpled tubes with different helical and dimpled pitches. Int. J. Heat Mass Transf. 121, 620–631 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.001

    Article  Google Scholar 

  14. M. Noorbakhsh, M. Zaboli, S.S. Ajarostaghi, Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J. Therm. Anal. Calorim. 140(3), 1341–1353 (2020). https://doi.org/10.1007/s10973-019-08509-w

    Article  Google Scholar 

  15. C. Zhai, M.D. Islam, R. Simmons, I. Barsoum, Heat transfer augmentation in a circular tube with delta Winglet vortex generator pairs. Int. J. Therm. Sci. 140, 480–490 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.03.020

    Article  Google Scholar 

  16. S. Saedodin, M. Zaboli, S.H. Rostamian, Effect of twisted turbulator and various metal oxide nanofluids on the thermal performance of a straight tube: Numerical study based on experimental data. Chemical Engineering and Processing-Process Intensification. 158, 108106 (2020). https://doi.org/10.1016/j.cep.2020.108106

    Article  Google Scholar 

  17. F. Keramat, A. Azari, H. Rahideh, M. Abbasi, A CFD parametric analysis of natural convection in an H-shaped cavity with two-sided inclined porous fins. J. Taiwan Inst. Chem. Eng. 114, 142–152 (2020). https://doi.org/10.1016/j.jtice.2020.09.011

    Article  Google Scholar 

  18. X. Dong, X. Jin, P. Li, Q. Bi, M. Gui, T. Wang, Experimental research on heat transfer and flow resistance properties in spiral twisted tube heat exchanger. Appl. Therm. Eng. 176, 115397 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115397

    Article  Google Scholar 

  19. T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, Nanofluid-based direct absorption solar collector. Journal of renewable and sustainable energy. 2(3), 033102 (2010). https://doi.org/10.1063/1.3429737

    Article  Google Scholar 

  20. M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110

    Article  Google Scholar 

  21. R.B. Ganvir, P.V. Walke, V.M. Kriplani, Heat transfer characteristics in nanofluid—a review. Renew. Sustain. Energy Rev. 75, 451–460 (2017). https://doi.org/10.1016/j.rser.2016.11.010

    Article  Google Scholar 

  22. U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab., IL (United States); 1995

  23. M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids 94, 139–146 (2014). https://doi.org/10.1016/j.compfluid.2014.02.009

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Ghanbarpour, N. Nikkam, R. Khodabandeh, M.S. Toprak, Improvement of heat transfer characteristics of cylindrical heat pipe by using SiC nanofluids. Appl. Therm. Eng. 90, 127–135 (2015). https://doi.org/10.1016/j.applthermaleng.2015.07.004

    Article  Google Scholar 

  25. X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Convers. Manage. 130, 176–183 (2016). https://doi.org/10.1016/j.enconman.2016.10.049

    Article  Google Scholar 

  26. C. Qi, Y.L. Wan, C.Y. Li, D.T. Han, Z.H. Rao, Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube. Int. J. Heat Mass Transf. 115, 1072–1084 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.098

    Article  Google Scholar 

  27. W. Guo, G. Li, Y. Zheng, C. Dong, Laminar convection heat transfer and flow performance of Al2O3–water nanofluids in a multichannel-flat aluminum tube. Chem. Eng. Res. Des. 133, 255–263 (2018). https://doi.org/10.1016/j.cherd.2018.03.009

    Article  Google Scholar 

  28. H. Maddah, M. Ghazvini, M.H. Ahmadi, Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int. Commun. Heat Mass Transfer 104, 33–40 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.02.002

    Article  Google Scholar 

  29. Y. Tong, H. Lee, W. Kang, H. Cho, Energy and exergy comparison of a flat-plate solar collector using water, Al2O3 nanofluid, and CuO nanofluid. Appl. Therm. Eng. 159, 113959 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113959

    Article  Google Scholar 

  30. R.C. Al-Zuhairy, Z.S. Kareem, A.A. Abdulhadi, Al2O3-water nanofluid heat transfer enhancement of a twin impingement jet. Case Studies in Thermal Engineering. 20, 100626 (2020). https://doi.org/10.1016/j.csite.2020.100626

    Article  Google Scholar 

  31. S. Mukherjee, S. Chakrabarty, P.C. Mishra, P. Chaudhuri, Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation. Chemical Engineering and Processing-Process Intensification. 3, 107887 (2020). https://doi.org/10.1016/j.cep.2020.107887

    Article  Google Scholar 

  32. R. Shamsoddini, M. Mofidi, ISPH modeling and investigation of the effect of viscosity variations on the fluids mixing in a micro-channel due to oscillation of a circular cylinder. J. Taiwan Inst. Chem. Eng. 1, 1 (2021). https://doi.org/10.1016/j.jtice.2020.12.028

    Article  Google Scholar 

  33. M. Sheikholeslami, S. A. Farshad, Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew. Energy. 141, 246–258 (2019). https://doi.org/10.1016/j.renene.2019.04.007

  34. E. Ghasemi Seiyed, A. Ranjbar, Effect of nanoparticles in working fluid on thermal performance of solar parabolic trough collector. J. Mol. Liq. 1, 1 (2016). https://doi.org/10.1016/j.molliq.2016.06.091

  35. K.S. Reddy, K.R. Kumar, G.V. Satyanarayana, Numerical investigation of energy-efficient receiver for solar parabolic trough concentrator. Heat Transfer Eng. 29(11), 961–972 (2008). https://doi.org/10.1080/01457630802125757

    Article  ADS  Google Scholar 

  36. A. Benabderrahmane, A. Benazza, A.K. Hussein, Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with central corrugated insert. J. Heat Transf. 142(6) (2020). https://doi.org/10.1115/1.4046440

  37. O. Chakraborty, B. Das, R. Gupta, S. Debbarma, Heat transfer enhancement analysis of parabolic trough collector with straight and helical absorber tube. Thermal Science and Engineering Progress. 20, 100718 (2020). https://doi.org/10.1016/j.tsep.2020.100718

    Article  Google Scholar 

  38. S. Akbarzadeh, M.S. Valipour, Experimental study on the heat transfer enhancement in helically corrugated tubes under the non-uniform heat flux. J. Therm. Anal. Calorim. 7, 1–3 (2020). https://doi.org/10.1007/s10973-020-09385-5

    Article  Google Scholar 

  39. M.S. Khan, M. Yan, H.M. Ali, K.P. Amber, M.A. Bashir, B. Akbar, S. Javed, Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid. J. Therm. Anal. Calorim. 142(6), 2227–2241 (2020). https://doi.org/10.1007/s10973-020-09590-2

    Article  Google Scholar 

  40. K. Amani, M. Ebrahimpour, S. Akbarzadeh, M.S. Valipour, The utilization of conical strip inserts in a parabolic trough collector. J. Therm. Anal. Calorim. 11, 1–7 (2020). https://doi.org/10.1007/s10973-019-09233-1

    Article  Google Scholar 

  41. S. Saedodin, M. Zaboli, S.S. Ajarostaghi, Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with Turbulence-Inducing elements. Sustainable Energy Technol. Assess. 46, 101266 (2021). https://doi.org/10.1016/j.seta.2021.101266

    Article  Google Scholar 

  42. M.S. Nazir, A. Shahsavar, M. Afrand, M. Arıcı, S. Nižetić, Z. Ma, H.F. Öztop, A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustainable Energy Technol. Assess. 45, 101103 (2021). https://doi.org/10.1016/j.seta.2021.101103

    Article  Google Scholar 

  43. P.R. Vasanthi, P.G.J. Chandra Reddy, Experimental investigations on heat transfer and friction factor of hybrid nanofliud equiped with angular twisted strip inserts in a parabolic trough solar collector under turbulent flow. Int. J. Innov. Sci. Eng. Technol. 8(4), 1

  44. H. Peng, M. Li, F. Hu, S. Feng, Performance analysis of absorber tube in parabolic trough solar collector inserted with semi-annular and fin shape metal foam hybrid structure. Case Stud. Therm. Eng. 1, 101112. ‏https://doi.org/10.1016/j.csite.2021.101112

  45. O. Chakraborty, S. Roy, B. Das, R. Gupta, Effects of helical absorber tube on the energy and exergy analysis of parabolic solar trough collector–A computational analysis. Sustainable Energy Technol. Assess. 44, 101083 (2021). https://doi.org/10.1016/j.seta.2021.101083

    Article  Google Scholar 

  46. H. Khakrah, A. Shamloo, S.K. Hannani, Exergy analysis of parabolic trough solar collectors using Al2O3/synthetic oil nanofluid. Sol. Energy 173, 1236–1247 (2018). https://doi.org/10.1016/j.solener.2018.08.064

    Article  ADS  Google Scholar 

  47. M. Mirzaei, Experimental investigation of CuO nanofluid in the thermal characteristics of a flat plate solar collector. Environ. Prog. Sustainable Energy 38(1), 260–267 (2019). https://doi.org/10.1002/ep.12902

    Article  MathSciNet  Google Scholar 

  48. M.A. Sharafeldin, G. Gróf, Efficiency of evacuated tube solar collector using WO3/Water nanofluid. Renewable Energy 134, 453–460 (2019). https://doi.org/10.1016/j.renene.2018.11.010

    Article  Google Scholar 

  49. N. Singh, V. Khullar, On-sun testing of volumetric absorption based concentrating solar collector employing carbon soot nanoparticles laden fluid. Sustainable Energy Technol. Assess. 42, 100868 (2020). https://doi.org/10.1016/j.seta.2020.100868

    Article  Google Scholar 

  50. M.R. Saffarian, M. Moravej, M.H. Doranehgard, Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renewable Energy 146, 2316–2329 (2020). https://doi.org/10.1016/j.renene.2019.08.081

    Article  Google Scholar 

  51. Y. Peng, A. Zahedidastjerdi, A. Abdollahi, A. Amindoust, M. Bahrami, A. Karimipour, M. Goodarzi, Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J. Therm. Anal. Calorim. 139(4), 2623–2631 (2020). https://doi.org/10.1007/s10973-019-08684-w

    Article  Google Scholar 

  52. Q. Xiong, T. Tayebi, M. Izadi, A.A. Siddiqui, T. Ambreen, L.K. Li, Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model. Sustainable Energy Technol. Assess. 47, 101404 (2021). https://doi.org/10.1016/j.seta.2021.101404

    Article  Google Scholar 

  53. J. Subramani, P. Sevvel, S.A. Srinivasan, Influence of CNT coating on the efficiency of solar parabolic trough collector using AL2O3 nanofluids-a multiple regression approach. Materials Today: Proceedings. 45, 1857–1861 (2021). https://doi.org/10.1016/j.matpr.2020.09.047

    Article  Google Scholar 

  54. S.M. Hosseini, M.S. Dehaj, An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids. Energy 24, 121317 (2021). https://doi.org/10.1016/j.energy.2021.121317

    Article  Google Scholar 

  55. A.C. Yunus, Fluid Mechanics: Fundamentals and Applications (Si Units). Tata McGraw Hill Education Private Limited (2010)

  56. O. Adibi, S. Rashidi, J.A. Esfahani, Effects of perforated anchors on heat transfer intensification of turbulence nanofluid flow in a pipe. J. Therm. Anal. Calorim. 141(5), 2047–2059 (2020). https://doi.org/10.1007/s10973-020-09705-9

    Article  Google Scholar 

  57. W. He, D. Toghraie, A. Lotfipour, F. Pourfattah, A. Karimipour, M. Afrand, Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int. Commun. Heat Mass Transfer 110, 104440 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2019.104440

    Article  Google Scholar 

  58. A. Bejan, Convection heat transfer. (2013)

  59. M. Zaboli, S. Saedodin, S.S. Mousavi Ajarostaghi, M. Nourbakhsh, Numerical evaluation of the heat transfer in a shell and corrugated coil tube heat exchanger with three various water‐based nanofluids. Heat Transf. https://doi.org/10.1002/htj.22161

  60. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 24(3), 227–38

  61. S. Saedodin, S.H. Rostamian, M. Zaboli, Hydrothermal analysis and optimization of heat transfer and pressure drop characteristics of different nanofluids in a circular tube with turbulator. The European Physical Journal Plus. 136(7), 1–23 (2021). https://doi.org/10.1140/epjp/s13360-021-01678-4

    Article  Google Scholar 

  62. M. Zaboli, M. Nourbakhsh, S.S. Ajarostaghi, Numerical evaluation of the heat transfer and fluid flow in a corrugated coil tube with lobe-shaped cross-sector and two types of spiral twisted tape as swirl generator. J. Therm. Anal. Calorim. 15, 1–7 (2020). https://doi.org/10.1007/s10973-020-10219-7

    Article  Google Scholar 

  63. S. Rashidi, N.M. Zade, J.A. Esfahani, Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem. Eng. Process. 117, 27–37 (2017). https://doi.org/10.1016/j.cep.2017.03.013

    Article  Google Scholar 

  64. H. Olfian, A. Zabihi Sheshpoli, S.S. Mousavi Ajarostaghi, Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transfer 49(3), 1149–1169 (2020). https://doi.org/10.1002/htj.21656

    Article  Google Scholar 

  65. S.S. Mousavi Ajarostaghi, M. Shirzad, S. Rashidi, L.K. Li, Heat transfer performance of a nanofluid-filled tube with wall corrugations and center-cleared twisted-tape inserts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1, 1–21 (2020). https://doi.org/10.1080/15567036.2020.1841860

    Article  Google Scholar 

  66. H.K. Moghadam, S.S.M. Ajarostaghi, S. Poncet, Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire. J. Therm. Anal. Calorim. 1, 1–13 (2019). https://doi.org/10.1007/s10973-019-08876-4

    Article  Google Scholar 

  67. S.S. Mousavi Ajarostaghi, M. Aghanezhad, H. Davudi, M. Mohammadzadeh Amiri, Numerical Evaluation the Heat Transfer Enhancement in a Tube with Curved Conical Turbulator Insert. Int. J. Ambient Energy 1, 1–23 (2021). https://doi.org/10.1080/01430750.2021.1945490

    Article  Google Scholar 

  68. M. Abbaspour, S.S. Mousavi Ajarostaghi, S.A. Hejazi Ra, M. Nimafar, Heat transfer improvement in a tube by inserting perforated conical ring and wire coil as turbulators. Heat Transf.‏ https://doi.org/10.1002/htj.22167

  69. B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal. 11(2), 151–170 (1998). https://doi.org/10.1080/08916159808946559

    Article  ADS  Google Scholar 

  70. B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 6, 147059 (2014). https://doi.org/10.1155/2014/147059

    Article  Google Scholar 

  71. L.S. Sundar, M.K. Singh, A.C. Sousa, Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transfer 52, 73–83 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012

    Article  Google Scholar 

  72. L.S. Sundar, E.V. Ramana, M.P. Graça, M.K. Singh, A.C. Sousa, Nanodiamond-Fe3O4 nanofluids: preparation and measurement of viscosity, electrical and thermal conductivities. Int. Commun. Heat Mass Transfer 73, 62–74 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.02.013

    Article  Google Scholar 

  73. S.S. Ajarostaghi, M. Zaboli, M. Nourbakhsh, Numerical evaluation of turbulence heat transfer and fluid flow of hybrid nanofluids in a pipe with innovative vortex generator. J. Therm. Anal. Calorim. 4, 1–5 (2020). https://doi.org/10.1007/s10973-020-10205-z

    Article  Google Scholar 

  74. C.J. Ho, J.B. Huang, P.S. Tsai, Y.M. Yang, Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int. Commun. Heat Mass Transfer 37(5), 490–494 (2010). https://doi.org/10.1016/j.icheatmasstransfer.2009.12.007

    Article  Google Scholar 

  75. S.H. Hashemi Karouei, S.S.M. Ajarostaghi, M. Gorji-Bandpy, S.R. Hosseini Fard, Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. J. Therm. Anal. Calorim. 143(2), 1 (2021). https://doi.org/10.1007/s10973-020-09425-0

    Article  Google Scholar 

  76. F.A. Hamedani, S.S.M. Ajarostaghi, S.A. Hosseini, Numerical evaluation of the effect of geometrical and operational parameters on thermal performance of nanofluid flow in convergent–divergent tube. J. Therm. Anal. Calorim. 1, 1–23 (2019). https://doi.org/10.1007/s10973-019-08765-w

    Article  Google Scholar 

  77. H. Javadi, J.F. Urchueguia, S.S. Mousavi Ajarostaghi, B. Badenes, Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger. Energies 14(10), 2892 (2021). https://doi.org/10.3390/en14102892

    Article  Google Scholar 

  78. P. Frank, Incropera, D.P. DeWitt, Introduction to Heat Transfer. Wiley (1990)

  79. B. Zou, J. Dong, Y. Yao, Y. Jiang, An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas. Appl. Energy 163, 396–407 (2016). https://doi.org/10.1016/j.apenergy.2015.10.186

    Article  Google Scholar 

  80. H.E. Woei, C.K. Sinz, M.N. Khalis, S.A. Abbas, Numerical study on turbulent force convective heat transfer of hybrid nanofluid, Ag/HEG in a circular channel with constant heat flux. J. Adv. Res. Fluid Mech. Therm. Sci. 24(1), 1–1 (2016)

    Google Scholar 

  81. M. Izadi, R. Mohebbi, D. Karimi, M.A. Sheremet, Numerical simulation of natural convection heat transfer inside a┴ shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem. Eng. Process.-Process Intensif. 125, 56–66 (2018). https://doi.org/10.1016/j.cep.2018.01.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zaboli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaboli, M., Mousavi Ajarostaghi, S.S., Saedodin, S. et al. Hybrid nanofluid flow and heat transfer in a parabolic trough solar collector with inner helical axial fins as turbulator. Eur. Phys. J. Plus 136, 841 (2021). https://doi.org/10.1140/epjp/s13360-021-01807-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01807-z

Navigation