Skip to main content
Log in

Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, three-dimensional heat transfer and flow characteristics of hybrid nanofluids under turbulent flow condition in a parabolic trough solar collector (PTC) receiver has been investigated. Ag–ZnO/Syltherm 800, Ag–TiO2/Syltherm 800, and Ag–MgO/Syltherm 800 hybrid nanofluids with 1.0%, 2.0%, 3.0%, and 4.0% nanoparticle volume fractions are used as working fluids. Reynolds number is between 10,000 and 80,000. The temperature of the fluid is taken as 500 K. The C++ homemade code has been written for the nonuniform heat flux boundary condition for the outer surface of the receiver. Variations of thermal efficiency, heat transfer coefficient, friction factor, PEC number, Nusselt number, and temperature distribution are presented for three different types of hybrid nanofluids and four different nanoparticle volume fractions with different Reynolds numbers. Also, the graphs of the average percent increase according to Syltherm 800 are given for the working parameters. According to the results of the study, all hybrid nanofluids are found to provide superiority over the base fluid (Syltherm 800) with respect to heat transfer and flow features. Heat transfer augments with the growth of Reynolds number and nanoparticle volume fraction. Thermal efficiency, which is one of the important parameters for PTC, decreases with increasing Reynolds number and increases with the increasing volume fraction of nanoparticle. It is obtained that the most efficient working fluid for the PTC receiver is the Ag–MgO/Syltherm 800 hybrid nanofluid with 4.0% nanoparticle volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area (m2)

k :

Turbulent kinetic energy (m2 s−2)

C p :

Specific heat (J kg−1 K−1)

\(u_{\rm i}\), \(u_{\rm j}\) :

Averaged velocity components (m s−1)

x, y, z :

Cartesian coordinates (m)

P :

Pressure (Pa)

\(- \rho \overline{{u_{\rm i}^{\prime} u_{\rm j}^{\prime} }}\) :

Reynolds stress (N m−2)

\(x_{\rm i}\), \(x_{\rm j}\) :

Spatial coordinates (m)

T :

Temperature (K)

k r :

Thermal conductivity of the receiver material (W m−1 K−1)

f :

Friction factor

Re:

Reynolds number

Nu:

Nusselt number

h :

Heat transfer coefficient (W m−2 K−1)

\(u^{\prime}\), \(v^{\prime}\), \(w^{\prime}\) :

Fluctuations of velocity (m s−1)

\(G_{\rm k}\) :

Generation of turbulent kinetic energy due to mean velocity gradients (kg m−1 s−3)

\(C_{1}\), \(C_{2}\), \(C_{\upmu }\) :

Turbulent model constants

\(S_{\rm ij}\) :

Rate of linear deformation tensor (s−1)

S :

Modulus of the mean rate of strain tensor (s−1)

\(u\), \(v\), \(w\) :

Velocity components (m s−1)

\(q^{\prime\prime}\) :

Heat flux (W m−2)

I :

Direct normal irradiance (W m−2)

d :

Receiver diameter (m)

\(\Delta P\) :

Pressure difference (Pa)

L :

Length of the receiver (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Pr:

Prandtl number

θ :

Circumferential angle of receiver (°)

θ r :

Rim angle (°)

ρ :

Density (kg m−3)

\(\mu\) :

Viscosity (Pa s)

\(\delta_{\rm ij}\) :

Kronecker delta

λ :

Fluid thermal conductivity (W m−1 K−1)

\(\sigma_{\rm h,t}\) :

Turbulent Prandtl number for energy

\(\mu_{\rm t}\) :

Eddy viscosity (Pa s)

ε :

Turbulent dissipation rate (m2 s−3)

\(\sigma_{\rm k}\) :

Turbulent Prandtl number for k

\(\sigma_{\upvarepsilon }\) :

Turbulent Prandtl number for ε

\(v\) :

Kinematic viscosity (m2 s−1)

\(\eta\) :

Turbulence model parameter

\(\eta_{\text{ter}}\) :

Thermal efficiency

\(\phi\) :

Nanoparticle volume fraction

p:

Aperture

i:

Inlet

f:

Fluid

eff:

Effective

hnf:

Hybrid nanoparticle

p1, p2:

Nanoparticle

i, j, k:

Spatial indices

inner:

Receiver inner surface

w:

Wall

b:

Bulk

o:

Outlet

′:

Fluctuation from average value

–:

Time-averaged value

References

  1. Bellos E, Tzivanidis C. Enhancing the performance of evacuated and non-evacuated parabolic trough collectors using twisted tape inserts, perforated plate inserts and internally finned absorber. Energies. 2018;11:1129.

    Google Scholar 

  2. Kumaresan G, Sudhakar P, Santosh R, Velraj R. Experimental and numerical studies of thermal performance enhancement in the receiver part of solar parabolic trough collectors. Renew Sustain Energy Rev. 2017;77:1363–74.

    Google Scholar 

  3. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    CAS  Google Scholar 

  4. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    CAS  Google Scholar 

  5. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  6. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int J Heat Mass Transf. 2014;78:64–75.

    CAS  Google Scholar 

  7. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    CAS  Google Scholar 

  8. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2016;52:2293–301.

    CAS  Google Scholar 

  9. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.

    CAS  Google Scholar 

  10. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol. 2016;30:809–15.

    Google Scholar 

  11. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. Exp Therm Fluid Sci. 2016;76:1–11.

    CAS  Google Scholar 

  12. Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems—potential of nanofluids. J Mol Liq. 2019;289:111049.

    CAS  Google Scholar 

  13. Ali H, Babar H, Shah T, Sajid M, Qasim M, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8:587.

    Google Scholar 

  14. Amina B, Miloud A, Samir L, Abdelylah B, Solano JP. Heat transfer enhancement in a parabolic trough solar receiver using longitudinal fins and nanofluids. J Therm Sci. 2016;25:410–7.

    CAS  Google Scholar 

  15. Bretado de los Rios MS, Rivera-Solorio CI, García-Cuéllar AJ. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. Renew Energy. 2018;122:665–73.

    CAS  Google Scholar 

  16. Ghasemi SE, Ranjbar AA. Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid: a CFD modelling study. J Mol Liq. 2016;222:159–66.

    CAS  Google Scholar 

  17. Kaloudis E, Papanicolaou E, Belessiotis V. Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew Energy. 2016;97:218–29.

    CAS  Google Scholar 

  18. Khakrah H, Shamloo A, Kazemzadeh HS. Determination of parabolic trough solar collector efficiency using nanofluid: a comprehensive numerical study. J Sol Energy Eng. 2017;139:051006.

    Google Scholar 

  19. Mwesigye A, Huan Z, Meyer JP. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid. Appl Energy. 2015;156:398–412.

    CAS  Google Scholar 

  20. Mwesigye A, Huan Z, Meyer JP. Thermal performance and entropy generation analysis of a high concentration ratio parabolic trough solar collector with Cu-Therminol®VP-1 nanofluid. Energy Convers Manag. 2016;120:449–65.

    CAS  Google Scholar 

  21. Alsarraf J, Rahmani R, Shahsavar A, Afrand M, Wongwises S, Tran MD. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. J Therm Anal Calorim. 2019;137:1809–25.

    CAS  Google Scholar 

  22. Shahsavar A, Godini A, Sardari PT, Toghraie D, Salehipour H. Impact of variable fluid properties on forced convection of Fe3O4/CNT/water hybrid nanofluid in a double-pipe mini-channel heat exchanger. J Therm Anal Calorim. 2019;137:1031–43.

    CAS  Google Scholar 

  23. Shahsavar A, Sardari PT, Toghraie D. Free convection heat transfer and entropy generation analysis of water–Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow. 2019;29:915–34.

    Google Scholar 

  24. Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.

    CAS  Google Scholar 

  25. Minea AA. Challenges in hybrid nanofluids behavior in turbulent flow: recent research and numerical comparison. Renew Sustain Energy Rev. 2017;71:426–34.

    CAS  Google Scholar 

  26. Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.

    CAS  Google Scholar 

  27. Moghadassi A, Ghomi E, Parvizian F. A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int J Therm Sci. 2015;92:50–7.

    CAS  Google Scholar 

  28. Chamkha AJ, Miroshnichenko IV, Sheremet MA. Numerical analysis of unsteady conjugate natural convection of hybrid water-based nanofluid in a semicircular cavity. J Therm Sci Eng Appl. 2017;9:041004-1.

    Google Scholar 

  29. Nabil MF, Azmi WH, Hamid KA, Zawawi NNM, Priyandoko G, Mamat R. Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int Commun Heat Mass Transf. 2017;83:30–9.

    CAS  Google Scholar 

  30. Sidik NAC, Adamu IM, Jamil MM, Kefayati GHR, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.

    CAS  Google Scholar 

  31. Minea AA, El-Maghlany WM. Influence of hybrid nanofluids on the performance of parabolic trough collectors in solar thermal systems: recent findings and numerical comparison. Renew Energy. 2018;120:350–64.

    CAS  Google Scholar 

  32. Bellos E, Tzivanidis C. Thermal analysis of parabolic trough collector operating with mono and hybrid nanofluids. Sustain Energy Technol Assess. 2018;26:105–15.

    Google Scholar 

  33. Nohavica D, Gladkov P. ZnO nanoparticles and their applications-new achievements, Olomouc, Czech Republic. EU 2010;10:12–14

    Google Scholar 

  34. Leena M, Srinivasan S. Synthesis and ultrasonic investigations of titanium oxide nanofluids. J Mol Liq. 2015;206:103–9.

    CAS  Google Scholar 

  35. Menlik T, Sözen A, Gürü M, Öztaş S. Heat transfer enhancement using MgO/water nanofluid in heat pipe. J Energy Inst. 2015;88:247–57.

    CAS  Google Scholar 

  36. Behar O, Khellaf A, Mohammedi K. A novel parabolic trough solar collector model—validation with experimental data and comparison to engineering equation solver (EES). Energy Convers Manag. 2015;106:268–81.

    Google Scholar 

  37. Fernández-García A, Zarza E, Valenzuela L, Pérez M. Parabolic-trough solar collectors and their applications. Renew Sustain Energy Rev. 2010;14:1695–721.

    Google Scholar 

  38. Forristall R. Heat transfer analysis and modeling of a parabolic trough solar receiver implemented in engineering equation solver [Internet]. 2003 Oct. Report No.: NREL/TP-550-34169, 15004820. http://www.osti.gov/servlets/purl/15004820/.

  39. Bellos E, Tzivanidis C, Tsimpoukis D. Thermal enhancement of parabolic trough collector with internally finned absorbers. Sol Energy. 2017;157:514–31.

    Google Scholar 

  40. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl Energy. 2014;136:989–1003.

    Google Scholar 

  41. Gong X, Wang F, Wang H, Tan J, Lai Q, Han H. Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with pin fin arrays inserting. Sol Energy. 2017;144:185–202.

    Google Scholar 

  42. Kurşun B. Thermal performance assessment of internal longitudinal fins with sinusoidal lateral surfaces in parabolic trough receiver tubes. Renew Energy. 2019;140:816–27.

    Google Scholar 

  43. Ansys fluent 19 theory guide pdf [Internet]. [cited 2019 Sep 19]. http://drawer.ne.jp/wordpress/wp-content/uploads/2019/08/5cxu/ansys-fluent-19-theory-guide-pdf.html.

  44. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. London: Pearson Education; 2007.

    Google Scholar 

  45. https://thermtest.com/materials-database#.

  46. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    CAS  Google Scholar 

  47. Tayebi T, Chamkha AJ. Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer Heat Transf Part Appl. 2016;70:1141–56.

    CAS  Google Scholar 

  48. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–571.

    CAS  Google Scholar 

  49. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  50. Wang P, Liu DY, Xu C. Numerical study of heat transfer enhancement in the receiver tube of direct steam generation with parabolic trough by inserting metal foams. Appl Energy. 2013;102:449–60.

    Google Scholar 

  51. Huang Z, Li Z-Y, Yu G-L, Tao W-Q. Numerical investigations on fully-developed mixed turbulent convection in dimpled parabolic trough receiver tubes. Appl Therm Eng. 2017;114:1287–99.

    CAS  Google Scholar 

  52. Ekiciler R, Arslan K. CuO/water nanofluid flow over microscale backward-facing step and heat transfer performance analysis. Heat Transf Res. 2018;49:1489–505.

    Google Scholar 

  53. Cheng ZD, He YL, Cui FQ. Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int J Heat Mass Transf. 2012;55:5631–41.

    Google Scholar 

  54. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of tubular type. Berkeley: University of California Press; 1930.

    Google Scholar 

  55. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359–68.

    Google Scholar 

  56. Petukhov BS. Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Transf. 1970;6:503–64.

    Google Scholar 

  57. Blasius PRH. Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten. Forschungsheft. 1913;1–41.

  58. Jabbari F, Rajabpour A, Saedodin S. Viscosity of carbon nanotube/water nanofluid. J Therm Anal Calorim. 2019;135:1787–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Recep Ekiciler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekiciler, R., Arslan, K., Turgut, O. et al. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim 143, 1637–1654 (2021). https://doi.org/10.1007/s10973-020-09717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09717-5

Keywords

Navigation