Skip to main content
Log in

Magnetic dispersion of Dirac fermions in graphene under inhomogeneous field profiles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We address the exact relations for the energy spectrum of massive Dirac fermions of graphene for a class of position-dependent magnetic field profiles, which could be created under inhomogeneous strain fields, with possibility of inducing a Dirac gap. We then show that in the linear regime our results correspond well to the earlier approaches for the massless case. We also prove that our approach for obtaining the relativistic Landau levels of Dirac fermions created by a constant magnetic field together with a spatially varying normal pseudo-magnetic profile, which varies as \( 1/x^2\) , recovers well the earlier results in this regard. It turns out that, in this case, the associated Landau energy levels are obtained by considering two shape-invariant potentials which belong to the family of isotonic oscillators with a set of equally spaced energy levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.M. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  4. G. Cocco, E. Cadelano, L. Colombo, Phys. Rev. B 81, 241412(R) (2010)

    Article  ADS  Google Scholar 

  5. F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010)

    Article  Google Scholar 

  6. Z. Jiang, Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Solid State Commun. 143, 14 (2007)

    Article  ADS  Google Scholar 

  7. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  8. A.D. Martino, L. DellAnna, R. Egger, Phys. Rev. Lett. 98, 066802 (2007)

    Article  ADS  Google Scholar 

  9. A.D. Martino, L. DellAnna, R. Egger, Solid State Commun. 144, 547 (2007)

    Article  ADS  Google Scholar 

  10. N.M.R. Peres, E.V. Castro, J. Phys.: Condens. Matter 19, 406231 (2007)

    Google Scholar 

  11. M.R. Masir, P. Vasilopoulos, A. Matulis, F.M. Peeters, Phys. Rev. B 77, 235443 (2008)

    Article  ADS  Google Scholar 

  12. C.G. Beneventano, E.M. Santangelo, J. Phys. A 39, 7457 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  14. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  15. M.O. Goerbig, C. R. Phys. 12, 369 (2011)

    Article  ADS  Google Scholar 

  16. K.H. Ding, L.K. Lim, G. Su, Z.Y. Weng, arXiv:1709.09010

  17. Y. Barlas, K. Yang, A.H. Macdonald, Nanotechnology 23, 052001 (2012)

    Article  ADS  Google Scholar 

  18. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  19. M. Ezawa, Phys. Lett. A 372, 924 (2008)

    Article  ADS  Google Scholar 

  20. B. Midya, D.J. Fernndez, J. Phys. A 47, 285302 (2014)

    Article  MathSciNet  Google Scholar 

  21. M.R. Setare, D. Jahani, Int. J. Mod. Phys. B 25, 365 (2011)

    Article  ADS  Google Scholar 

  22. M.R. Setare, D. Jahani, Chin. Phys. Lett. 28, 097302 (2011)

    Article  ADS  Google Scholar 

  23. N.M.R. Peres, A.H.C. Neto, F. Guinea, Phys. Rev. B 73, 241403 (2006)

    Article  ADS  Google Scholar 

  24. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  25. E.B. Choubabi, M.E. Bouziani, A. Jellal, Int. J. Geom. Methods Mod. Phys. 7, 909 (2010)

    Article  MathSciNet  Google Scholar 

  26. V.M. Pereira, A.H.C. Neto, Phys. Rev. Lett. 103, 046801 (2009)

    Article  ADS  Google Scholar 

  27. S. Kuru, J. Negro, L.M. Nieto, J. Phys.: Condens. Matter 21, 455305 (2009)

    ADS  Google Scholar 

  28. L.G.D.S. Leite, C. Filgueiras, D. Cogollo, E.O. Silva, Phys. Lett. A 379, 907 (2015)

    Article  Google Scholar 

  29. M.R. Setare, O. Hatami, Chin. Phys. Lett. 25, 3848 (2008)

    Article  ADS  Google Scholar 

  30. M. Eshghi, H. Mehraban, C. R. Phys. 18, 47 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani, D., Shahbazi, F. & Setare, M.R. Magnetic dispersion of Dirac fermions in graphene under inhomogeneous field profiles. Eur. Phys. J. Plus 133, 328 (2018). https://doi.org/10.1140/epjp/i2018-12137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12137-4

Navigation