Skip to main content
Log in

Self-diffusion-driven pattern formation in prey–predator system with complex habitat under fear effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, we explore the influence of habitat complexity on the activities of prey and predator of a spatio-temporal system by incorporating self-diffusion. First, we modify the Rosenzweig–MacArthur predator–prey model by incorporating the effects of habitat complexity on the carrying capacity and fear effect of prey and predator functional response. We establish conditions for the existence and stability of all feasible equilibrium points of the non-spatial model, and later we prove the existence of Hopf and transcritical bifurcations in different parametric phase-planes analytically and numerically. The stability of the spatial system is studied, and we discuss the conditions for Turing instability. Selecting suitable control parameter from the Turing space, the existence conditions for stable patterns are derived using the amplitude equations. Results obtained from theoretical analysis of the amplitude equations are justified by numerical simulation results near the critical parameter value. Further, from numerical simulation, we illustrate the effect of diffusion of the dynamical system in the spatial domain by different pattern formations. Thus, our model clearly shows that the fear effect of prey and predator’s functional response makes an anti-predator behaviour including habitat complexity which helps the prey to survive in the spatio-temporal domain through diffusive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. Alstad, Basic Populas Models of Ecology (Prentice Hall Inc, Prentice, 2001)

    Google Scholar 

  2. T.W. Anderson, Predator responses prey refuges and density-dependent mortality of a marine fish. Ecology 82, 245–257 (2001)

    Article  Google Scholar 

  3. R.A. Armstrong, R. McGehee, Competitive exclusion. Am. Nat. 115, 151–170 (1980)

    Article  MathSciNet  Google Scholar 

  4. M. Banerjee, S. Abbas, Existence and non-existence of spatial patterns in a ratio-dependent predator–prey model. Ecol. Complex 21, 199–214 (2015)

    Article  Google Scholar 

  5. M. Banerjee, S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling–Tanner model. Math. Biosci. 236, 64–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Banarjee, S. Petrovskii, Self-organized spatial pattern and chaos in a ratio dependent predator–prey system. Theor. Ecol. 4, 37–53 (2011)

    Article  Google Scholar 

  7. B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70, 1948–1969 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. S.S. Bell, Habitat complexity of polychaete tube caps: influence of architecture on dynamics of a meioepibenthic assemblage. J. Mar. Res. 43, 647–657 (1985)

    Article  Google Scholar 

  9. S. Bell, E. McCoy, H. Mushinsky, Habitat Structure: The Physical Arrangement of Objects in Space (Chapman & Hall, London, 1991), pp. 3–27

    Book  Google Scholar 

  10. T.A. Burton, Volterra Integral and Differential Equations (Academic Press Inc, Orlando, 1983)

    MATH  Google Scholar 

  11. J.B. Collings, Bifurcation and stability analysis of temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    Article  MATH  Google Scholar 

  12. B.C. Coull, J.B.J. Wells, Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64, 1599–1609 (1983)

    Article  Google Scholar 

  13. S. Creel, D. Christianson, Relationships between direct predation and risk effects. TREE 23, 194–201 (2008)

    Google Scholar 

  14. W. Cresswell, Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  15. V. Dufiet, J. Boissonade, Dynamics of turing pattern monolayers close to onset. Phys. Rev. E 53(5), 4883–4892 (1996)

    Article  ADS  Google Scholar 

  16. H.I. Freedman, Deterministic Mathematical Method in Population Ecology (Marcel Debber, New York, 1980)

    MATH  Google Scholar 

  17. W.J. Freeland, D. Choquenot, Determinants of herbivore carrying capacity: plants, nutrients, and Equus Asinus in Northern Australia. Ecology 71, 589–597 (1990)

    Article  Google Scholar 

  18. S. Ghorai, S. Poria, Emergent impacts of quadratic mortality on pattern formation in a predator–prey system. Nonlinear Dyn. 87, 2715–2734 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. O.E. Gonzalez, J.R. Ramos, Dynamics consequences of prey refuge in a simple model system: more prey and few predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  20. M.A. Hixon, B.A. Menge, Species diversity: prey refuges modify the interactive effects of predation and competition. Theor. Popul. Biol. 39(2), 178–200 (1991)

    Article  Google Scholar 

  21. M.E. Hochberg, R.D. Holt, Refuge evolution and the population dynamics of coupled of host–parasitoid associations. Evolut. Ecol. 9, 633–661 (1995)

    Article  Google Scholar 

  22. R.D. Holt, Prey communities in patchy environment. OIKOS 50, 276–290 (1987)

    Article  Google Scholar 

  23. Y. Huang, F. Chen, L. Zhong, Stability analysis of prey–predator model with Holling type-III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672–683 (2006)

    MathSciNet  MATH  Google Scholar 

  24. N.E. Humphries, H. Weimerskirchc, N. Queiroza, E.J. Southalla, D.W. Simsa, Foraging success of biological Levy flights recorded in situ. Proc. Natl. Acad. Sci. 109, 7169–7174 (2011)

    Article  ADS  Google Scholar 

  25. M. Ipsen, F. Hynne, P.G. Sorensen, Amplitude equations for reaction–diffusion systems with a Hopf bifurcation and slow real modes. Physica D 136, 66 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. P.L. James, K.L. Heck Jr., The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176, 187–200 (1994)

    Article  Google Scholar 

  27. D. Jana, R. Agrawal, R.K. Upadhyay, Dynamics of generalist predator in a stochastic environment: effect of delayed growth and prey refuge. Appl. Math. Comput. 268, 1072–1094 (2015)

    MathSciNet  MATH  Google Scholar 

  28. D. Jana, N. Bairagi, Habitat complexity, dispersal and metapopulations: macroscopic study of a predator–prey system. Ecol. Complex. 17, 131–139 (2014)

    Article  Google Scholar 

  29. D. Jana, S. Ray, Impact of physical and behavioral prey refuge on the stability and bifurcation of Gause type Filippov prey–predator system. Model. Earth Syst. Environ. 2, 24 (2016)

    Article  Google Scholar 

  30. W.D. Johnson, Predation, habitat complexity and variation in density dependent mortality of temperate reef fishes. Ecology 87, 1179–1188 (2006)

    Article  Google Scholar 

  31. T.K. Kar, Stability analysis of a prey predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. V. Krivan, Effect of optimal antipredator behaviour of prey on predator–prey dynamics: the role of refuge. Theor. Popul. Biol. 53, 131–142 (1998)

    Article  MATH  Google Scholar 

  33. V. Krivan, On the Gause predator–prey model with a refuge: a fresh look at the history. J. Theor. Biol. 274, 67–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  35. S.A. Lassau, D.F. Hochuli, Effects of habitat complexity on ant assemblages. Ecography 27, 157–164 (2004)

    Article  Google Scholar 

  36. S.L. Lima, Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48(1), 25–34 (1998)

    Article  Google Scholar 

  37. S.L. Lima, Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol. Rev. 84(3), 485–513 (2010)

    Article  Google Scholar 

  38. R.M. May, Stability and Complexity in Model Ecosystem (Princeton University Press, Princeton, 1974)

    Google Scholar 

  39. J.R. McAuliffe, Competition for space, disturbance, and the structure of a benthic stream community. Ecology 65, 894–908 (1984)

    Article  Google Scholar 

  40. J.N. McNair, The effect of refuge on prey–predator interactions: a reconsideration. Theor. Popul. Biol. 29, 38–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. J.D. Meiss, Differential Dynamical Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2007)

    Book  MATH  Google Scholar 

  42. H. Merdan, S. Kayan, Hopf bifurcations in Lengyel epstein reaction diffusion model with discrete time delay. Nonlinear Dyn. 79, 1757–1770 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. P. Meyer, J. Ausubel, Carrying capacity: a model with logistically varying limits. Technol. Forecast. Soc. Change 61, 209–214 (1999)

    Article  Google Scholar 

  44. G.T. Miller, S.E. Spoolman, Each species plays a unique role in its ecosystem, in Essentials of Ecology. Belmont: Cengage Learning, 91 (2009)

  45. J.L. Orrock, E.L. Preisser, J.H. Grabowski, G.C. Trussell, The cost of safety: Refuges increase the impact of predation risk in aquatic systems. Ecology 94(3), 573–579 (2013)

    Article  Google Scholar 

  46. G.D. Ruxton, Short term refuge use and stability of predator–prey model. Theor. Popul. Biol. 47, 1–17 (1995)

    Article  MATH  Google Scholar 

  47. S. Sarwardi, P.K. Mandal, S. Ray, Analysis of a competitive prey–predator system with a prey refuge. BioSystems 110, 133–148 (2012)

    Article  Google Scholar 

  48. S. Sasmal, Population dynamics with multiple Allee effects induced by fear factors induced by fear factors—a mathematical study on prey–predator. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. L.A. Segel, L.A. Jackson, Dissipative structure: an explanation and an ecological example. J. Theor Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  50. A. Sih, Prey refuges and predator–prey stability. Theor. Popul. Biol. 31, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  51. G.Q. Sun, A. Chakraborty, Q.X. Liu, Z. Jin, K.E. Anderson, B.L. Li, Influence of time delay and nonlinear diffusion on herbivore outbreak. Commun. Nonlinear Sci. Numer. Simulat. 19, 1507–1518 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. G.Q. Sun, Z. Jin, Q. Liu, L. Li, Pattern formation inducedby cross-diffusion in a predator–prey system. Chin. Phys. B 17(11), 3936–3941 (2008)

    Article  ADS  Google Scholar 

  53. R.I. Taylor, Predation (Chapman and Hall, New York, 1984)

    Book  Google Scholar 

  54. A.M. Turing, The chemical basis of mokphogenesis. Philos. Trans. R. Soc. Lond. 237, 37–72 (1952)

    ADS  MATH  Google Scholar 

  55. R.K. Upadhyay, S. Mishra, Population dynamic consequences of fearful prey in a spatiotemporal predator–prey system. Math. Biosci. Eng. 16(1), 338–372 (2018)

    Article  MathSciNet  Google Scholar 

  56. R.K. Upadhyay, V. Volpert, N.K. Thakur, Propagation of turing patterns in plankton model. J. Biol. Dyn. 6, 524–538 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Wang, J. Cao, G.Q. Sun, J. Li, Effect of time delay on pattern dynamics in a spatial epidemic model. Physica A 412, 137–148 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. W. Wang, Y. Li, F. Rao, L. Zhang, Y. Tan, Pattern selection in a ratio-dependent predator–prey model. J. Stat. Mech. Theory Exp. (2010). https://doi.org/10.1088/1742-5468/2010/11/P11036

    Article  MATH  Google Scholar 

  59. W. Wang, Q.X. Liu, Z. Jin, Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75(5), 051913 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  60. W. Wang, W. Wang, Y. Lin, Y. Tan, Pattern selection in a predation model with self and cross diffusion. Chin. Phys. B (2011). https://doi.org/10.1088/1674-1056/20/3/034702

    Article  Google Scholar 

  61. W. Wang, L. Zhang, H. Wang, Z. Li, Pattern formation of a predator–prey system with Ivlev-type functional response. Ecol. Model. 221(2), 131–140 (2010)

    Article  Google Scholar 

  62. X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1–26 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. X. Wang, X. Zou, Modeling the fear effect in predator–prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1–35 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. L. Xue, Pattern formation in a predator–prey model with spatial effect. Physica A 391, 5987–5996 (2012)

    Article  ADS  Google Scholar 

  65. X.P. Yan, C.H. Zhang, Stability and turing instability in a diffusive predator–prey system with Beddington–Deangelis functional response. Nonlinear Anal. RWA 20, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator–prey model with herd behavior. Chaos 23(3), 033102 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. L.Y. Zanette, M. Clinchy, Perceived predation risk reduces the number of offspring songbirds produce per year. Science 334(6061), 1398–1401 (2011)

    Article  ADS  Google Scholar 

  68. G. Zhang, W. Wang, X. Wang, Coexistence states for a diffusive one-prey and two-predators with b–d functional response. Comput. Math. Appl. 387, 931–948 (2012)

    MathSciNet  MATH  Google Scholar 

  69. J. Zhang, W. Li, X. Yan, Hopf bifurcation and Turing instability in spatial homogeneous and inhomogeneous predator–prey models. Appl. Math. Comput. 218(5), 1883–1893 (2011)

    MathSciNet  MATH  Google Scholar 

  70. T. Zhang, Y. Xing, H. Zang, M. Han, Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78(1), 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  71. X.C. Zhang, G.Q. Sun, Z. Jin, Spatial dynamics in a predator–prey model with Beddington–Deangelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  ADS  Google Scholar 

  72. W. Zuo, Y. Song, Stability and bifurcation analysis of a reaction diffusion equation with distributed delay. Nonlinear Dyn. 79, 437–454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Research of M.L. is supported by DST-SERB by a Distinguished Fellowship and research of Debaldev Jana is supported by SERB, Govt. of India fund (MTR/2019/000788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaldev Jana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, D., Batabyal, S. & Lakshmanan, M. Self-diffusion-driven pattern formation in prey–predator system with complex habitat under fear effect. Eur. Phys. J. Plus 135, 884 (2020). https://doi.org/10.1140/epjp/s13360-020-00897-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00897-5

Navigation