Skip to main content
Log in

Ion source terms effect on collisional plasma sheath characteristics with non-extensively distributed electrons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A one-dimensional fluid model of an unmagnetized collisional plasma sheath consisting of q-non-extensive electrons and singly charged positive ions with finite temperature is developed and presented. The ions are described by the fluid model, which is based on the continuity and momentum equations of ions, while the electrons are considered obeying non-extensive distribution according to the Tsallis statistics. In this work, different ion source terms are used in order to compare their contribution. The modified Bohm sheath criterion is determined for different source terms to specify the ion velocity at sheath entrance. The model equations are solved numerically in the plasma-wall transition region. The effect of ion source terms on the collisional electropositive plasma sheath characteristics such as ion and electron density, electric potential, ion velocity, sheath width and space charge is investigated. The influence of the ionization frequency parameter on the sheath behavior has also been studied. The results obtained show a strong impact of ion source terms on the plasma sheath structure. It is also shown that the ion source terms effect increases significantly when the ionization frequency parameter increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F.F. Chen, Introduction to Plasma Physics (Plenum, New York, 1974)

    Google Scholar 

  2. M.M. Hatami, Phys. Plasmas 22, 023506 (2015)

    ADS  Google Scholar 

  3. M.A. Liebermann, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994)

    Google Scholar 

  4. M.M. Hatami, A.R. Niknam, B. Shokri, H. Ghomi, Phys. Plasmas 15, 053508 (2008)

    ADS  Google Scholar 

  5. J.R. Conrad, J. Appl. Phys. 62, 777 (1987)

    ADS  Google Scholar 

  6. J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, J. Appl. Phys. 62, 4591 (1987)

    ADS  Google Scholar 

  7. N. Sternberg, J. Poggie, IEEE Trans. Plasma Sci. 32, 2217 (2004)

    ADS  Google Scholar 

  8. M. Widner, A. Alexeff, W.D. Jones, Phys. Fluids 5, 2532 (1970)

    ADS  Google Scholar 

  9. N.W. Cheung, Mater. Chem. Phys. 46, 132 (1996)

    Google Scholar 

  10. A. Anders, Handbook of Plasma Immersion Ion Implantation, Chap. 3 (Wiley, New York, 2000)

    Google Scholar 

  11. F. Le Coeur, J. Pelletier, Y. Arnal, A. Lacoste, Surf. Coat. Technol. 125, 71 (2000)

    Google Scholar 

  12. M. El Kaouini, H. Chatei, I. Driouch, M. El Hammouti, J. Fusion Energy 30, 199 (2011)

    ADS  Google Scholar 

  13. M. El Kaouini, H. Chatei, J. Fusion Energy 31, 317 (2012)

    ADS  Google Scholar 

  14. M.M. Hatami, B. Shokri, Phys. Plasmas 20, 033506 (2013)

    ADS  Google Scholar 

  15. M.M. Hatami, B. Shokri, A.R. Niknam, Phys. Plasmas 15, 123501 (2008)

    ADS  Google Scholar 

  16. M. Khoramabadi, H. Ghomi, M. Ghorannevis, J. Fusion Energy 29, 365 (2010)

    ADS  Google Scholar 

  17. B. Alterkop, J. Appl. Phys. 95, 1650 (2004)

    ADS  Google Scholar 

  18. I. Driouch, H. Chatei, M. El Bojaddaini, J. Plasma Phys. 81, 905810104 (2015)

    Google Scholar 

  19. G.C. Das, B. Singha, J. Chutia, Phys. Plasmas 6, 3685 (1999)

    ADS  Google Scholar 

  20. I. Driouch, H. Chatei, Eur. Phys. J. D 71, 9 (2017)

    ADS  Google Scholar 

  21. T. Gyergyek, J. Kovacic, Phys. Plasmas 22, 043502 (2015)

    ADS  Google Scholar 

  22. S. Adhikari, R. Moulick, K.S. Goswami, Phys. Plasmas 24, 083501 (2017)

    ADS  Google Scholar 

  23. R. Moulick, S. Adhikari, K.S. Goswami, Phys. Plasmas 26, 043512 (2019)

    ADS  Google Scholar 

  24. R. Moulick, S. Adhikari, K.S. Goswami, Phys. Plasmas 24, 114501 (2017)

    ADS  Google Scholar 

  25. M.M. Hatami, M. Tribeche, IEEE Trans. Plasma Sci. 46, 868 (2018)

    ADS  Google Scholar 

  26. D.R. Borgohain, K. Saharia, Plasma Phys. Rep. 44, 137 (2018)

    ADS  Google Scholar 

  27. Z. Kiran, H.A. Shah, M.N.S. Qureshi, G. Murtaza, Solar Phys. 236, 167 (2006)

    ADS  Google Scholar 

  28. A. Luque, H. Schamel, Phys. Rep. 415, 261 (2005)

    ADS  Google Scholar 

  29. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992)

    ADS  Google Scholar 

  30. M.M. Hatami, Phys. Plasmas 22, 013508 (2015)

    ADS  Google Scholar 

  31. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  32. C. Tsallis, S.F. Institute, Braz. J. Phys. 39, 337 (2009)

    ADS  Google Scholar 

  33. N. Navab Safa, H. Ghomi, A.R. Niknam, J. Plasma Phys. 81, 905810303 (2015)

    Google Scholar 

  34. J.A.S. Lima, R. Silva, J. Santos, Phys. Rev. E 61, 3260 (2000)

    ADS  Google Scholar 

  35. M. El Bojaddaini, H. Chatei, Mater. Today: Proc. 24, 37 (2020)

    Google Scholar 

  36. D.R. Borgohain, K. Saharia, Phys. Plasmas 25, 032122 (2018)

    ADS  Google Scholar 

  37. M. Tribeche, L. Djebarni, R. Amour, Phys. Plasmas 17, 042114 (2010)

    ADS  Google Scholar 

  38. J.J. Lowke, D.K. Davies, J. Appl. Phys. 48, 4991 (1977)

    ADS  Google Scholar 

  39. T. Gyergyek, J. Kovacic, Phys. Plasmas 23, 063510 (2016)

    ADS  Google Scholar 

  40. T. Gyergyek, J. Kovacic, Phys. Plasmas 24, 063505 (2017)

    ADS  Google Scholar 

  41. T. Gyergyek, J. Kovacic, J. Phys: Conf. Ser. 700, 012016 (2016)

    Google Scholar 

  42. T. Gyergyek, J. Kovacic, J. Phys: Conf. Ser. 768, 012005 (2016)

    Google Scholar 

  43. H. Ghomi, M. Khoramabadi, J. Fusion Energy 30, 481 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El Bojaddaini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Bojaddaini, M., Chatei, H. Ion source terms effect on collisional plasma sheath characteristics with non-extensively distributed electrons. Eur. Phys. J. Plus 135, 680 (2020). https://doi.org/10.1140/epjp/s13360-020-00699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00699-9

Navigation