Skip to main content
Log in

Sheath criterion in constant mean free path collisional plasma with two distinct temperature q-nonextensive electrons

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A constant mean free path collisional plasma sheath model is investigated in the presence of two-temperature q-nonextensive electrons and fluid ions. By using Sagdeev potential technique, a modified Bohm sheath criterion is derived and also verified. It is shown that the density distribution of positive ions reduces monotonically when the Bohm velocity lies between the derived limits. The effect of collision on the plasma sheath profiles viz. density, potential, net space charge density and positive ion velocity in the sheath in presence of the proposed plasma configuration is investigated. It is also shown that the increasing values of ion-neutral collisionality leads to a decrease of sheath thickness, increase of sheath potential and net space charge density in the sheath region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F F Chen Introduction to Plasma Physics (New York: Plenum Press) (1974)

  2. M M Hatami Phys. Plasmas 22 023506 (2015)

    Article  ADS  Google Scholar 

  3. D Bohm The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill) (1949)

  4. J Ou, N Xiang, C Gan and J Yang Phys. Plasmas 20 063502 (2013)

    Article  ADS  Google Scholar 

  5. ITER Physics Basis Editors Nucl. Fusion 39 2137 (1999)

  6. P C Stangeby The Plasma Boundary of Magnetic Fusion Devices (Bristol and Philadelphia: Institute of Physics Publishing) (2000)

  7. K Shiraishi and S Takamura Contrib. Plasma Phys. 32 243 (1992)

    Article  ADS  Google Scholar 

  8. P C Stangeby Plasma Phys. Control. Fusion 37 1031 (1995)

    Article  ADS  Google Scholar 

  9. R W Boswell, A J Lichtenberg and D Vender IEEE Trans. Plasma Sci. 20 62 (1992)

  10. Z X Wang, J Y Liu, X Zou, Y Liu and X G Wang Chin. Phys. Lett. 20 1537 (2003)

    Article  ADS  Google Scholar 

  11. K Yasserian, M Aslaninejad, M Ghoranneviss and F M Aghamir J. Phys. D Appl. Phys. 41 105215 (2008)

    Article  ADS  Google Scholar 

  12. J I F Palop, J Ballesteros, M A Hernandez and R M Crespo Plasma Sources Sci. Technol. 16 S76 (2007)

    Article  ADS  Google Scholar 

  13. T E Sheridan and J Goree Phys. Plasmas 3 2796 (1991)

    Google Scholar 

  14. R Moulick and K S Goswami Phys. Plasmas 21 083702 (2014)

    Article  ADS  Google Scholar 

  15. M M Hatami Phys. Plasmas 22 013508 (2015)

    Article  ADS  Google Scholar 

  16. E I El-Awady and W M Moslem Phys. Plasmas 18 082306 (2011)

    Article  ADS  Google Scholar 

  17. A Renyi Acta Math. Hung. 6 285 (1955)

  18. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  ADS  Google Scholar 

  19. J Du Phys. Lett. A 329 262 (2004)

    Article  Google Scholar 

  20. Y Liu, S Q Liu and L Zhou Phys. Plasmas 20 043702 (2013)

    Article  ADS  Google Scholar 

  21. N N Safa, H Ghomi and A R Niknam Phys. Plasmas 21 082111 (2014)

    Article  ADS  Google Scholar 

  22. M Sharifian, H R Sharifinejad, M B Zarandi and A R Niknam J. Plasma Phys. 80 607 (2014)

    Article  ADS  Google Scholar 

  23. D R Borgohain, K Saharia and K S Goswami Phys. Plasmas 23 122113 (2016)

    Article  ADS  Google Scholar 

  24. D Ismael and C Hassan Eur. Phys. J. D 71 1 (2017)

    Article  Google Scholar 

  25. A Arghand-Hesar, A Esfandyari-Kalejahi and M Akbari-Moghanjoughi Phys. Plasmas 24 (6) 063504 (2017)

    Article  ADS  Google Scholar 

  26. M Li, M A Vyvoda, S K Dew and M J Brett IEEE Trans. Plasma Sci. 28 248 (2000)

    Article  ADS  Google Scholar 

  27. H Amemiya J. Phys. D Appl. Phys. 23 999 (1990)

    Article  ADS  Google Scholar 

  28. M A Lieberman and A J Lichtenbereg Principle of Plasma Discharges and Material Processing (New York: John Wiley and Sons) (1994)

  29. N S J Braithwaite and J E Allen J. Phys. D Appl. Phys. 21 1733 (1988)

    Article  ADS  Google Scholar 

  30. K Yasserian and M Aslaninejad Phys. Plasmas 19 073507 (2012)

    Article  ADS  Google Scholar 

  31. K Yasserian and M Aslaninejad Eur. Phys. J. D 67 (8) 161 (2013)

    Article  ADS  Google Scholar 

  32. M Tribeche, L Djebarni and R Amour Phys. Plasmas 17 042114 (2010)

    Article  ADS  Google Scholar 

  33. N. S. Saini and Shalini Astrophys. Space Sci. 346 155 (2013)

  34. M Ferdousi and A A Mamun Braz. J. Phys. 45 89 (2014)

    Article  ADS  Google Scholar 

  35. K-U Riemann J. Phys. D 24 493 (1991)

  36. H Ghomi and M Khoramabadi J. Plasma Phys. 76 247 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Saharia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, D.R., Saharia, K. Sheath criterion in constant mean free path collisional plasma with two distinct temperature q-nonextensive electrons. Indian J Phys 93, 107–114 (2019). https://doi.org/10.1007/s12648-018-1263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1263-8

Keywords

PACS Nos.

Navigation