Skip to main content
Log in

Landau quantization effects on hybrid waves in semiconductor plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The impact of Landau quantization on the lower hybrid waves (LHWs) exciting in the semiconductor plasmas, due to classical electron beam, is studied. The quantum hydrodynamic model is employed to derive the dispersion relation of low-frequency electrostatic waves for instability analysis of the LHWs. The quantum effects include Fermi degenerate pressure, Bohm potential, Landau quantization, and exchange-correlation potential for semiconductor plasma species. The dispersion relation is elaborated both quantitatively and qualitatively for the special case of GaAs in the presence of external magnetic field \(\mathbf{B}_0\). The impact of different plasma parameters such as density ratios of electrons and holes \(\alpha \), beam temperature \(T_{\mathrm{b}}\), speed of beam electrons \(v_0\), propagation angle \(\theta \), cyclotron frequency \(\omega _{\mathrm{ce}}\), temperature of electrons and holes \(T_{\mathrm{e}}\), \(T_{\mathrm{h}}\) and Landau quantization \(\eta \), on the dispersion relation of LHWs, is studied. The instability of the LHWs remarkably increases by increasing the concentration of the semiconductor electrons, propagation angle of the wave vector and the beam speed, for the magnetic quantization parameter. However, the instability decreases by increasing the temperature of beam. It is noticed that at \((T_{\mathrm{b}}>v_0)\), the \(\eta \) has no effect on the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Akbari-Moghanjoughi, B. Eliasson, Phys. Scr. 91, 105601 (2016)

    Article  ADS  Google Scholar 

  2. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 2004)

    Book  Google Scholar 

  3. P.A. Markovich, C.A. Ringhofer, C. Schmeister, Semiconductor Equations (Springer, Berlin, 1990)

    Book  Google Scholar 

  4. F.J. Zutavern, A.G. Baca, W.W. Chow, M.J. Hafich, H.P. Hjalmarson, G.M. Loubriel, A. Mar, M.W. O’Malley, L.D. Roose, G.A. Vawter, Electron–Hole Plasma in Semiconductors Conference on Record. IEEE Pulsed Power Plasma Science (2001), pp. 289–293

  5. R.E. Burgess, Proc. Phys. Soc. B 68, 661 (1955)

    Article  ADS  Google Scholar 

  6. M.R. Amin, Phys. Plasmas 22, 032303 (2015)

    Article  ADS  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. I (Pergamon, New York, 1980), p. 173

    Google Scholar 

  8. G.S. Bisnovati-Kogan, Astron. Zh. 47, 813 (1970)

    ADS  Google Scholar 

  9. L.D. Landau, E.M. Lifshitz, Statistical Physics (Butter Worth-Heinemann, Oxford, 1998). Part1

    MATH  Google Scholar 

  10. L.N. Tsintsadze, N.L. Tsintsadze, Phys. Plasmas 76, 403 (2010)

    Article  Google Scholar 

  11. B. Eliasson, P.K. Shukla, Phys. Plasmas 76, 7 (2010)

    Article  Google Scholar 

  12. J.D. Landstreet, Phys. Rev. 153, 1372 (1967)

    Article  ADS  Google Scholar 

  13. S.L. Shapiro, S.A. Teukol, Sky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1981)

    Google Scholar 

  14. V.M. Lipunov, Neutron Star Astrophysics (Nauka, Moscow, 1987)

    Google Scholar 

  15. A.L. Verdon, I.H. Cairns, D.B. Melrose, P.A. Robinson, Phys. Plasmas 16, 052105 (2009)

    Article  ADS  Google Scholar 

  16. A. Rasheed, M. Jamil, F. Areeb, M. Siddique, M. Salimullah, J. Phys. D Appl. Phys. 49, 175109 (2016)

    Article  ADS  Google Scholar 

  17. P. Sumera, A. Rasheed, M. Jamil, M. Siddique, F. Areeb, Phys. Plasmas 24, 122107 (2017)

    Article  ADS  Google Scholar 

  18. M. Jamil, M. Shahid, I. Zeba, M. Salimullah, H.A. Shah, G. Murtaza, Phys. Plasmas 19, 023705 (2012)

    Article  ADS  Google Scholar 

  19. I. Zeba, M.E. Yahia, P.K. Shukla, W.M. Moslem, Phys. Lett. A 376, 2309 (2012)

    Article  ADS  Google Scholar 

  20. M.E. Yahia, I.M. Azzpuz, W.M. Moslem, Appl. Phys. Lett. 103, 082105 (2013)

    Article  ADS  Google Scholar 

  21. J.H. Luscombe, A.M. Bouchard, M. Luban, Phys. Rev. B 46, 10262 (1992)

    Article  ADS  Google Scholar 

  22. F. Areeb, A. Rasheed, M. Jamil, M. Siddique, P. Sumera, Phys. Plasmas 25, 012111 (2018)

    Article  ADS  Google Scholar 

  23. F. Areeb, A. Rasheed, M. Jamil, Phys. Plasmas 25, 102110 (2018)

    Article  ADS  Google Scholar 

  24. M. Siddique, M. Jamil, A. Rasheed, F. Areeb, A. Javed, P. Sumera, Zeitschrift für Naturforschung A 73(2), 135 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jamil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumera, P., Rasheed, A., Areeb, F. et al. Landau quantization effects on hybrid waves in semiconductor plasmas. Eur. Phys. J. Plus 135, 356 (2020). https://doi.org/10.1140/epjp/s13360-020-00372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00372-1

Navigation