Skip to main content
Log in

Similarity solutions using Lie group theoretic method for cylindrical shock wave in self-gravitating perfect gas with axial magnetic field: isothermal flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Propagation of cylindrical shock wave in a self-gravitating perfect gas under the influence of axial magnetic field using Lie group of transformation method is investigated. The flow is considered to be isothermal. Density and magnetic field are assumed to be varying in the undisturbed medium. Two different cases of solutions are brought out by the arbitrary constants appearing in the expressions of infinitesimals of local Lie group of transformations. One is with a power law shock path and the other one is with an exponential law shock path. Numerical solutions are obtained for both the cases of power law and exponential law shock paths. The effects of variation in Alfven-Mach number, gravitational parameter and ambient density variation index for power law shock path and effects of variation in Alfven-Mach number, gravitational parameter and ambient magnetic field variation index on the flow variables in the case of exponential law shock path are studied. Also the effects of increase in value of gravitational parameter and in the strength of ambient magnetic field on the shock strength are investigated. The increase in value of Alfven-Mach number leads to the increase in the density ratio which infers to the decrease in shock strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S.C. Lin, J. Appl. Phys. 25, 54 (1954)

    Article  ADS  Google Scholar 

  2. G. Nath, Astrophys. Space Sci. 361, 31 (2016)

    Article  ADS  Google Scholar 

  3. G. Nath, J.P. Vishwakarma, Acta Astronaut. 123, 200 (2016)

    Article  ADS  Google Scholar 

  4. G. Nath, S. Singh, Int. J. Non-linear Mech. 88, 102 (2017)

    Article  ADS  Google Scholar 

  5. P.E. Hydon, Symmetry Methods for Differential Equations: A Beginner’s Guide (Cambridge University Press, London, 2000)

    Book  Google Scholar 

  6. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, Berlin, 1974)

    Book  Google Scholar 

  7. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989)

    Book  Google Scholar 

  8. H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University Press, New York, 1989)

    MATH  Google Scholar 

  9. N.H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations (Wiley, Chichester, 1999)

    MATH  Google Scholar 

  10. P.J. Olver, Application of Lie Groups to Differential Equations, 2nd edn. (Springer, New York, 1993)

    Book  Google Scholar 

  11. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982)

    MATH  Google Scholar 

  12. J.D. Logan, J.D.J. Pérez, SIAM J. Appl. Math. 39, 512 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  13. H.A. Zedan, Appl. Math. Comput. 132, 63 (2002)

    MathSciNet  Google Scholar 

  14. P. Basarab-Horwath, R.Z. Zhdanov, J. Math. Phys. 42, 376 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.J. Englefield, Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics (Kluwer Academic, Dordrecht, 1992), p. 203

    Google Scholar 

  16. D.D. Laumbach, R.F. Probstein, Phys. Fluids 13, 1178 (1970)

    Article  ADS  Google Scholar 

  17. P.L. Sachdev, S. Ashraf, Zeitschrift für angewandte Mathematik und Physik ZAMP 22, 1095 (1971)

    Article  ADS  Google Scholar 

  18. V.P. Korobenikov, Problems in the theory of point explosion in gases (American Mathematical Soc., 1976)

  19. T.A. Zhuravskaya, V.A. Levin, J. Appl. Math. Mech. 60, 745 (1996)

    Article  MathSciNet  Google Scholar 

  20. G. Nath, Adv. Space Res. 47, 1463 (2011)

    Article  ADS  Google Scholar 

  21. I. Lerche, Aust. J. Phys. 32, 491 (1979)

    Article  ADS  Google Scholar 

  22. I. Lerche, Aust. J. Phys. 34, 279 (1981)

    Article  ADS  Google Scholar 

  23. S.C. Purohit, J. Phys. Soc. Jpn. 36, 288 (1974)

    Article  ADS  Google Scholar 

  24. J.B. Singh, P.R. Vishwakarma, Astrophys. Space Sci. 95, 99 (1983)

    Article  ADS  Google Scholar 

  25. J.K. Truelove, R.I. Klein, C.F. McKee, J.H. Holliman II, L.H. Howell, J.A. Greenough, D.T. Woods, Astrophys. J. 495, 821 (1998)

    Article  ADS  Google Scholar 

  26. R.I. Klein, C.F. McKee, P. Colella, Astrophys. J. 420, 213 (1994)

    Article  ADS  Google Scholar 

  27. B.P. Rybakin, V.B. Betelin, V.R. Dushin, E.V. Mikhalchenko, S.G. Moiseenko, L.I. Stamov, V.V. Tyurenkova, Acta Astronaut. 119, 131 (2016)

    Article  ADS  Google Scholar 

  28. G.I. Taylor, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201, 159 (1950)

  29. G.I. Taylor, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 201, 175 (1950)

  30. L.I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, New York, 1959)

    MATH  Google Scholar 

  31. Y.B. Zel’dovich, P. Yu Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. II (Academic Press, New York, 1967)

    Google Scholar 

  32. G. Nath, A.K. Sinha, Physics Research International (2011). https://doi.org/10.1155/2011/782172

    Article  Google Scholar 

  33. S. Galtier, Introduction to Modern Magnetohydrodynamics (Cambridge University Press, Cambridge, 2016)

    Book  Google Scholar 

  34. P. Rosenau, S. Frankenthal, Phys. Fluids 19, 1889 (1976)

    Article  ADS  Google Scholar 

  35. G.J. Hutchens, J. Appl. Phys. 77, 2912 (1995)

    Article  ADS  Google Scholar 

  36. G. Nath, Shock Waves 24, 415 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Sumeeta Singh gracefully acknowledges DST, New Delhi, India, for providing INSPIRE fellowship, IF No.: 150736, to pursue research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, G., Singh, S. Similarity solutions using Lie group theoretic method for cylindrical shock wave in self-gravitating perfect gas with axial magnetic field: isothermal flow. Eur. Phys. J. Plus 135, 316 (2020). https://doi.org/10.1140/epjp/s13360-020-00292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00292-0

Navigation