Skip to main content
Log in

Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Similarity solutions are obtained for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential cylindrical shock wave propagating in a rotational axisymmetric dusty gas, which has variable azimuthal and axial fluid velocities. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to obey exponential laws. The dusty gas is assumed to be a mixture of small solid particles and a perfect gas. To obtain some essential features of the shock propagation, small solid particles are considered as a pseudo-fluid; it is assumed that the equilibrium flow conditions are maintained in the flow field, and that the viscous stresses and heat conduction in the mixture are negligible. Solutions are obtained for the cases when the flow between the shock and the piston is either isothermal or adiabatic, by taking into account the components of the vorticity vector. It is found that the assumption of zero temperature gradient results in a profound change in the density distribution as compared to that for the adiabatic case. The effects of the variation of the mass concentration of solid particles in the mixture \(K_p\), and the ratio of the density of solid particles to the initial density of the gas \(G_a\) are investigated. A comparison between the solutions for the isothermal and adiabatic cases is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zel’dovich, YaB, Raizer, Yu P.: Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, vol. II. Academic Press, New York (1967)

    Google Scholar 

  2. Sagdeev, R.Z.: Reviews of plasma physics. In: Leontovich, M.A. (ed) Consultants Bureau, New York, vol. 4 (1966)

  3. Chen, F.F.: Introduction to Plasma Physics. Plenum, New York (1974). Chapter 8

    Google Scholar 

  4. Chaturani, P.: Strong cylindrical shocks in a rotating gas. Appl. Sci. Res. 23, 197–211 (1970)

    Article  MATH  Google Scholar 

  5. Sakurai, A.: Propagation of spherical shock waves in stars. J. Fluid Mech. 1, 436–453 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  6. Nath, O., Ojha, S.N., Takhar, H.S.: Propagation of a shock wave in a rotating interplanetary atmosphere with increasing energy. J. Mhd. Plasma Res. 8, 269–282 (1999)

    Google Scholar 

  7. Pai, S.I., Menon, S., Fan, Z.Q.: Similarity solution of a strong shock wave propagation in a mixture of a gas and dust particles. Int. J. Eng. Sci. 18, 1365–1373 (1980)

    Article  MATH  Google Scholar 

  8. Higashino, F., Suzuki, T.: The effect of particles on blast wave in a dusty gas. Z. Naturforsch 35a, 1330–1336 (1980)

    Google Scholar 

  9. Miura, H., Glass, I.I.: On the passage of a shock wave through a dusty gas layer. Proc. Roy. Soc. Lond. A 385, 85–105 (1983)

    Article  Google Scholar 

  10. Gretler, W., Regenfelder, R.: Strong shock wave generated by a piston moving in a dust-laden gas under isothermal condition. Eur. J. Mech. B/Fluids 24, 205–218 (2005)

    Article  MATH  Google Scholar 

  11. Popel, S.I., Gisko, A.A.: Charged dust and shock phenomena in the solar system. Nonlinear Process. Geophys. 13, 223–229 (2006)

    Article  Google Scholar 

  12. Vishwakarma, J.P., Nath, G.: Similarity solutions for unsteady flow behind an exponential shock in a dusty gas. Phys. Scri. 74, 493–498 (2006)

    Article  MathSciNet  Google Scholar 

  13. Vishwakarma, J.P., Nath, G.: A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles. Meccanica 44, 239–254 (2009)

    Article  MATH  Google Scholar 

  14. Vishwakarma, J.P., Nath, G.: Propagation of a cylindrical shock wave in a rotating dusty gas with heat-conduction and radiation heat flux. Phys. Scri. 81, 045401(9pp) (2010)

  15. Vishwakarma, J.P., Nath, G.: Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux. Commun Nonlinear Sci Numer Simul. 17, 154–169 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Igra, O., Hu, G., Falcovitz, J., Wang, B.Y.: Shock wave reflection from a wedge in a dusty gas. Int. J. Multiph. Flow 30, 1139–1169 (2004)

    Article  MATH  Google Scholar 

  17. Sommerfeld, M.: The unsteadiness of shock waves propagating through gas-particle mixtures. Exp. Fluids 3, 197–206 (1985)

    Article  Google Scholar 

  18. Conforto, F.: Wave features and group analysis for an axi-symmetric model of a dusty gas. Int. J. Nonlinear Mech. 35, 925–930 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Elperin, T., Ben-Dor, G., Igra, O.: Head-on collision of normal shock waves in dusty gases. Int. J. Heat Fluid Flow 8, 303–312 (1987)

    Article  Google Scholar 

  20. Miura, H.: Decay of shock waves in a dusty-gas shock tube. Fluid Dyn. Res. 6, 251–259 (1990)

    Article  Google Scholar 

  21. Vishwakarma, J.P., Nath, G., Singh, K.K.: Propagation of shock waves in a dusty gas with heat conduction, radiation heat flux and exponentially varying density. Phys. Scr. 78, 035402(11pp) (2008)

  22. Nath, G.: Propagation of a strong cylindrical shock wave in a rotational axisymetric dusty gas with exponentially varying density. Res. Astron. Astrophys. 10, 445–460 (2010)

    Article  Google Scholar 

  23. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Mir Publishers, Moscow (1982)

    MATH  Google Scholar 

  24. Ranga Rao, M.P., Ramana, B.V.: Unsteady flow of a gas behind an exponential shock. J. Math. Phys. Sci. 10, 465–476 (1976)

    MATH  Google Scholar 

  25. Vishwakarma, J.P., Nath, G.: Similarity solutions for the flow behind an exponential shock in a non- ideal gas. Meccanica 42, 331–339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Singh, J.B., Vishwakarma, P.R.: Unsteady isothermal flow of a gas behind an exponential shock in magnetogasdynamics. Astrophys. Space Sci. 95, 111–116 (1983)

    Google Scholar 

  27. Miura, H., Glass, I.I.: Development of the flow induced by a piston moving impulsively in a dusty gas. Proc. Roy. Soc. Lond. A 397, 295–309 (1985)

    Article  MATH  Google Scholar 

  28. Korobeinikov, V.P.: Problems in the theory of point explosion in gases. In: Proceedings of the Steklov Institute of Mathematics, No. 119. American Mathematical Society, Providence (1976)

  29. Steiner, H., Hirschler, T.: A self-similar solution of a shock propagation in a dusty gas. Eur. J. Mech. B/Fluids 21, 371–380 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Levin, V.A., Skopina, G.A.: Detonation wave propagation in rotational gas flows. J. Appl. Mech. Tech. Phys. 45, 457–460 (2004)

    Article  MathSciNet  Google Scholar 

  31. Nath, G.: Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal flow of perfect gas with variable density. Adv. Space Res. 47, 1463–1471 (2011)

    Article  Google Scholar 

  32. Rosenau, P., Frankenthal, S.: Equatorial propagation of axisymmetric magnetohydrodynamic shocks I. Phys. Fluids 19, 1889–1899 (1976)

    Article  MATH  Google Scholar 

  33. Higashino, F.: Characteristic method applied to blast waves in a dusty gas. Z. Naturforsch 38a, 399–406 (1983)

    Google Scholar 

  34. Liberman, M.A., Velikovich, A.L.: Self-similar spherical expansion of a laser plasma or detonation products into a low-density ambient gas. Phys. Fluids 1, 1271–1276 (1989)

    Article  Google Scholar 

  35. Pai, S.I.: Two Phase Flows, Chap. V. Vieweg Tracts in Pure Applied Physics vol. 3. Vieweg, Braunschweig (1977)

  36. Geng, J.H., Groenig, H.: Dust suspensions accelerated by shock waves. Exp. Fluids 28, 360–367 (1980)

    Article  Google Scholar 

  37. Hirschler, T., Steiner, H.: A self-similar solution for the implosion problem in a dusty gas. Fluid Dyn. Res. 32, 61–67 (2003)

    Article  MATH  Google Scholar 

  38. Laumbach, D.D., Probstein, R.F.: Self-similar strong shocks with radiation in a decreasing exponential atmosphere. Phys. Fluids 13, 1178–1183 (1970)

    Article  Google Scholar 

  39. Sachdev, P.L., Ashraf, S.: Conversing spherical and cylindrical shocks with zero temperature gradient in the rear flow-field. J. Appl. Math. Phys. (ZAMP) 22, 1095–1102 (1971)

    Article  Google Scholar 

  40. Nath, G.: Shock waves generated by a piston moving in a non-ideal gas in the presence of a magnetic field: isothermal flow. South East Asian J. Math. Sci. 5, 69–83 (2007)

    MATH  MathSciNet  Google Scholar 

  41. Zhuravskaya, T.A., Levin, V.A.: The propagation of converging and diverging shock waves under intense heat exchange conditions. J. Appl. Math. Mech. 60, 745–752 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Vishwakarma, J.P., Nath, G.: Converging detonation waves in a dusty gas. J. Tech. Phys. 47, 159–173 (2006)

    MATH  Google Scholar 

  43. Marble, F.E.: Dynamics of dusty gases. Annu. Rev. Fluid Mech. 2, 397–446 (1970)

    Article  Google Scholar 

  44. Moelwyn-Hughes, E.A.: Physical Chemistry. Pergamon Press, London (1961)

    Google Scholar 

  45. Igra, O., Falcovitz, J., Reichenbach, H., Heilig, W.: Experimental and numerical study of the interaction between a planar shock wave and a square cavity. J. Fluid Mech. 313, 105–130 (1996)

    Article  Google Scholar 

  46. Igra, O., Wu, X., Falcovitz, J., Meguro, T., Takayama, K., Heilig, W.: Experimental and theoretical study of shock wave propagation through double-bend ducts. J. Fluid Mech. 437, 255–282 (2001)

    Article  MATH  Google Scholar 

  47. Falcovtiz, J., Alfandary, G., Ben-Dor, G.: Numerical simulation of the head-on reflection of a regular reflection. Int. J. Numer. Methods Fluids 17, 1055–1077 (1993)

    Article  Google Scholar 

  48. Falcovitz, J., Ben-Artzi, M.: Recent developments of the GRP method. JSME Int. J. B. 38, 497–517 (1995)

    Article  Google Scholar 

  49. Hutchens, G.J.: Approximate cylindrical blast theory: nearfield solutions. J. Appl. Phys. 77, 2912–2915 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The author is thankful to Dr. J. P. Vishwakarma, Professor of Mathematics DDU Gorakhpur University Gorakhpur-273009, India, for his valuable suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nath.

Additional information

Communicated by A. Merlen.

Appendix

Appendix

From the basic equations of continuity, momentum and energy in Eulerian co-ordinates for the rotational axisymmetric flow of the mixture of a perfect gas and small solid particles with the similarity transformations

$$\begin{aligned}&\eta =\frac{r}{R}, \end{aligned}$$
(64)
$$\begin{aligned} \begin{aligned}&u=\frac{r}{t}V(\eta ),\,v=\frac{r}{t}\phi (\eta ),\,w=\frac{r}{t}W(\eta ), \\&\rho =\rho _a D(\eta ),\,p=\frac{r^{2}}{t^{2}}\rho _a P(\eta ),\,Z=Z_a D(\eta ), \end{aligned} \end{aligned}$$
(65)

(where the variable \(\eta \) assumes the value of 1 at the shock front and \(\eta _p\) on the piston surface, such that the piston radius \(r_{\mathrm{p}} =\eta _{p} R\), with \(R (\sim \! t^{n+1})\) being the shock radius), we obtain

$$\begin{aligned}&\left[ {V-(n+1)} \right] \frac{\mathrm{d}D}{\mathrm{d}\eta }+D\frac{\mathrm{d}V}{\mathrm{d}\eta }+\frac{2DV}{\eta }=0, \end{aligned}$$
(66)
$$\begin{aligned}&\left[ {V\!-\!(n\!+\!1)} \right] \frac{\mathrm{d}V}{\mathrm{d}\eta }\!+\!\frac{1}{D} \frac{\mathrm{d}P}{\mathrm{d}\eta }\!+\!\frac{V(V\!-\!1)}{\eta } \!+\!\frac{(2P\!-\!\phi ^{2}D)}{D\eta }\!=\!0, \nonumber \\ \end{aligned}$$
(67)
$$\begin{aligned}&\left[ {V-(n+1)} \right] \frac{\mathrm{d}\phi }{\mathrm{d}\eta }+\frac{(2V-1)\phi }{\eta }=0, \end{aligned}$$
(68)
$$\begin{aligned}&\left[ {V-(n+1)} \right] \frac{\mathrm{d}W}{\mathrm{d}\eta }+\frac{(V-1)W}{\eta }=0, \end{aligned}$$
(69)
$$\begin{aligned}&\frac{\mathrm{d}P}{\mathrm{d}\eta }-\frac{P \Gamma }{D(1-Z_a D)}\frac{\mathrm{d}D}{\mathrm{d}\eta }+\frac{2(V-1)P}{\eta \left[ {V-(n+1)} \right] }=0. \end{aligned}$$
(70)

The boundary conditions for a strong shock in the mixture at \(\eta =1\) are given by

$$\begin{aligned} \begin{aligned}&V(1)=\frac{2(1-Z_a )(n+1)}{(\Gamma +1)}, \quad D(1)=\frac{\Gamma +1}{(\Gamma -1+2Z_a)}, \\&P(1)=\frac{2(1-Z_a)(n+1)^{2}}{(\Gamma +1)},\quad \phi (1)=B\left( {B^{*}} \right) ^{-\frac{1}{n+1}}, \\&W(1)=C\left( {B^{*}} \right) ^{-\frac{1}{n+1}}, \end{aligned} \end{aligned}$$
(71)

where it was necessary to use \(\alpha =\delta =\frac{n}{n+1}\) for existence of similarity solutions. In addition to the shock conditions (71), the kinematic condition \(V(\eta _p)=(n+1)\) at the piston surface must be satisfied.

From equations (66) and (70), one can get the relation

$$\begin{aligned} \frac{D^{\Gamma + (\frac{n}{n+1})}}{(1-Z_a D)^{\Gamma }}=\frac{P \eta ^{(\frac{2}{n+1})}}{C_1} [V-(n+1)]^{-(\frac{n}{n+1})}, \end{aligned}$$
(72)

where \(C_1\) is a constant to be determined from (71).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, G. Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas. Shock Waves 24, 415–428 (2014). https://doi.org/10.1007/s00193-013-0474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-013-0474-3

Keywords

Navigation