Skip to main content
Log in

Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating non-ideal gas using Lie group theoretic method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The propagation of magnetogasdynamic cylindrical shock wave in rotating non-ideal gas under adiabatic flow condition, using Lie group of transformation method is investigated. The density is assumed to be constant, and magnetic field and azimuthal fluid velocity are assumed to be varying in the undisturbed medium. The arbitrary constants appearing in the expressions for the infinitesimals of the Local Lie group of transformations bring about two different cases of solutions, i.e. one with shock front expanding as power law and the other with shock front expanding as exponential law. Numerical solutions are obtained for both the cases of power-law and exponential-law shock paths. Distribution of magnetogasdynamical quantities is illustrated through figures. It is obtained that reduced azimuthal fluid velocity decreases, reduced radial fluid velocity increases, and reduced magnetic field decreases, attains the minimum and then increases for both cases of power-law and exponential-law shock paths as we move inwards from the shock front to the axis of symmetry. Reduced density decreases in the case of power-law shock path whereas it increases in the case of exponential law shock path. Also it is obtained that shock strength decreases with increase in value of adiabatic exponent, Alfven-Mach number or gas non-idealness parameter, whereas it increases due to increase in ambient azimuthal fluid velocity exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nath G (2016) Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the influence of gravitational field with conductive and radiative heat fluxes. Astrophys Space Sci 361(1):31

    Article  MathSciNet  Google Scholar 

  2. Lin SC (1954) Cylindrical shock waves produced by instantaneous energy release. J Appl Phys 25(1):54–57

    Article  MATH  Google Scholar 

  3. Taylor GI (1950) The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc R Soc Lond Ser A 201(1065):159–174

    Article  MATH  Google Scholar 

  4. Taylor GI (1950) The formation of a blast wave by a very intense explosion II. The atomic explosion of 1945. Proc R Soc Lond Ser A 201(1065):175–186

    Article  MATH  Google Scholar 

  5. Sedov LI (1959) Similarity and dimensional methods in mechanics. Academic Press, New York

    MATH  Google Scholar 

  6. Zel’dovich YaB, Raizer YuP (1967) Physics of shock waves and high temperature hydrodynamic phenomena, vol. II. Academic Press, New York

  7. Lee TS, Chen T (1968) Hydromagnetic interplanetary shock waves. Planet Space Sci 16(12):1483–1502

    Article  Google Scholar 

  8. Summers D (1975) An idealised model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind. Astron Astrophys 45:151–158

    Google Scholar 

  9. Chaturani P (1971) Strong cylindrical shocks in a rotating gas. Appl Sci Res 23(1):197–211

    Article  MathSciNet  MATH  Google Scholar 

  10. Vishwakarama JP, Vishwakarama S (2007) Magnetogasdinamic cylindrical shock wave in a rotating gas with variable density. Int J Appl Mech Eng 12(1):283–297

    Google Scholar 

  11. Vishwakarma JP, Maurya AK, Singh KK (2007) Self-similar adiabatic flow headed by a magnetogasdynamic cylindrical shock wave in a rotating non-ideal gas. Geophys Astrophys Fluid Dyn 101(2):155–168

    Article  MathSciNet  Google Scholar 

  12. Hishida M, Fujiwara T, Wolanski P (2009) Fundamentals of rotating detonations. Shock Waves 19(1):1–10

    Article  MATH  Google Scholar 

  13. Nath G (2011) Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal flow of perfect gas with variable density. Adv Space Res 47(9):1463–1471

    Article  Google Scholar 

  14. Nath O, Ojha SN, Takhar HS (1999) Propagation of a shock wave in a rotating interplanetary atmosphere with increasing energy. Theoret Chim Acta 44:87–98

    Google Scholar 

  15. Vishwakarma JP, Patel N (2015) Magnetogasdynamic cylindrical shock waves in a rotating nonideal gas with radiation heat flux. J Eng Phys Thermophys 88(2):521–530

    Article  Google Scholar 

  16. Korobeĭnikov VP (1976) Problems in the theory of point explosion in gases. Am Math Soc 119

  17. Shang JS (2001) Recent research in magneto-aerodynamics. Prog Aerosp Sci 37(1):1–20

    Article  Google Scholar 

  18. Lock RM, Mestel AJ (2008) Annular self-similar solutions in ideal magnetogasdynamics. J Plasma Phys 74(4):531–554

    Article  MATH  Google Scholar 

  19. Hartmann L (1998) Accretion processes in star formation. Cambridge University Press, Cambridge

    Google Scholar 

  20. Balick B, Frank A (2002) Shapes and shaping of planetary nebulae. Ann Rev Astron Astrophys 40(1):439–486

    Article  Google Scholar 

  21. Lerche I (1979) Mathematical theory of one-dimensional isothermal blast waves in a magnetic field. Aust J Phys 32(5):491–502

    Article  MathSciNet  Google Scholar 

  22. Lerche I (1981) Mathematical theory of cylindrical isothermal blast waves in a magnetic field. Aust J Phys 34(3):279–302

    Article  MathSciNet  Google Scholar 

  23. Nath G, Vishwakarma JP (2014) Similarity solution for the flow behind a shock wave in a non-ideal gas with heat conduction and radiation heat-flux in magnetogasdynamics. Commun Nonlinear Sci Numer Simul 19(5):1347–1365

    Article  MathSciNet  MATH  Google Scholar 

  24. Pullin DI, Mostert W, Wheatley V, Samtaney R (2014) Converging cylindrical shocks in ideal magnetohydrodynamics. Phys Fluids 26(9):097103

  25. Mostert W, Pullin DI, Samtaney R, Wheatley V (2016) Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current. J Fluid Mech 793:414–443

    Article  MathSciNet  MATH  Google Scholar 

  26. Nath G, Vishwakarma JP (2016) Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes. Acta Astronaut 128:377–384

    Article  Google Scholar 

  27. Nath G, Singh S (2017) Flow behind magnetogasdynamic exponential shock wave in self-gravitating gas. Int J Non-Linear Mech 88:102–108

    Article  Google Scholar 

  28. Nagasawa M (1987) Gravitational instability of the isothermal gas cylinder with an axial magnetic field. Progress Theoret Phys 77(3):635–652

    Article  Google Scholar 

  29. Rao MPR, Purohit NK (1976) Self-similar piston problem in non-ideal gas. Int J Eng Sci 14(1):91–97

    Article  MATH  Google Scholar 

  30. Anisimov SI, Spiner OM (1972) Motion of an almost ideal gas in the presence of a strong point explosion: PMM vol. 36, n \(\doteq \) 5. J Appl Math Mech 36(5):883–887

  31. Vishwakarma JP, Nath G (2007) Similarity solutions for the flow behind an exponential shock in a non-ideal gas. Meccanica 42(4):331–339

    Article  MathSciNet  MATH  Google Scholar 

  32. Nath G (2012) Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics. Ain Shams Eng J 3(4):393–401

    Article  Google Scholar 

  33. Vishwakarama JP, Chaube V, Patel A (2007) Self-similar solution of a shock propagation in a non-ideal gas. Int J Appl Mech Eng 12(3):813–829

    Google Scholar 

  34. Nath G (2015) Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas. Meccanica 50(7):1701–1715

    Article  MathSciNet  MATH  Google Scholar 

  35. Nath G, Pathak RP, Dutta M (2018) Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field. Acta Astronaut 142:152–161

    Article  Google Scholar 

  36. Nath G (2018) Flow behind an exponential shock in a rotational axisymmetric mixture of non-ideal gas and small solid particles with heat conduction and radiation heat flux. Acta Astronaut 148:355–368

    Article  Google Scholar 

  37. Roberts PH, Wu CC (1996) Structure and stability of a spherical implosion. Phys Lett A 213(1–2):59–64

    Article  Google Scholar 

  38. Wu CC, Roberts PH (1993) Shock-wave propagation in a sonoluminescing gas bubble. Phys Rev Lett 70(22):3424

    Article  Google Scholar 

  39. Bluman GW, Cole JD (1974) Similarity methods for differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  40. Bluman GW, Kumei S (1989) Symmetries and differential equations. Springer, New York

    Book  MATH  Google Scholar 

  41. Stephani H (1989) Differential equations: their solution using symmetries. Cambridge University Press, New York

    MATH  Google Scholar 

  42. Ibragimov NH (1999) Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, Chichester

    MATH  Google Scholar 

  43. Olver PJ (1993) Application of Lie groups to differential equations, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  44. Hydon PE (2000) Symmetry methods for differential equations: a Beginner’s guide. Cambridge University Press, London

  45. Logan JD, Perez JDJ (1980) Similarity solutions for reactive shock hydrodynamics. SIAM J Appl Math 39(3):512–527

    Article  MathSciNet  MATH  Google Scholar 

  46. Donato A (1987) Similarity analysis and non-linear wave propagation. Int J Non-Linear Mech 22(4):307–314

    Article  MATH  Google Scholar 

  47. Torrisi M (1988) Similarity solution and wave propagation in a reactive polytropic gas. J Eng Math 22(3):239–251

    Article  MathSciNet  MATH  Google Scholar 

  48. Zedan HA (2002) Applications of the group of equations of the one-dimensional motion of a gas under the influence of monochromatic radiation. Appl Math Comput 132(1):63–71

    MathSciNet  MATH  Google Scholar 

  49. Donato A, Oliveri F (1993) Reduction to autonomous form by group analysis and exact solutions of axisymmetric MHD equations. Math Comput Model 18(10):83–90

    Article  MathSciNet  MATH  Google Scholar 

  50. Zayed EME, Zedan HA (2001) Autonomous forms and exact solutions of equations of motion of polytropic gas. Int J Theor Phys 40(6):1183–1196

    Article  MATH  Google Scholar 

  51. Oliveri F, Speciale MP (2005) Exact solutions to the ideal magneto-gas-dynamics equations through Lie group analysis and substitution principles. J Phys A 38(40):8803

    Article  MathSciNet  MATH  Google Scholar 

  52. Kochina NN, Melnikova NS (1958) On unsteady motion of a gas forced out by a piston with counter pressure neglected. J Appl Math Mech 22:444–451

    Article  Google Scholar 

  53. Rosenau P, Frankenthal S (1976) Equatorial propagation of axisymmetric magnetohydrodynamic shocks. Phys Fluids 19:1889–1899

    Article  MATH  Google Scholar 

  54. Dryer M (1974) Interplanetary shock waves generated by solar flares. Space Sci Rev 15(4):403–468

    Article  Google Scholar 

  55. Vishwakarma JP, Nath G (2006) Similarity solutions for unsteady flow behind an exponential shock in a dusty gas. Phys Scr 74:493

    Article  MathSciNet  Google Scholar 

  56. Nath G, Singh S (2020) Similarity solutions for cylindrical shock wave in rotating ideal gas with or without magnetic field using Lie group theoretic method. Eur Phys J Plus 135(11):1–18

    Article  Google Scholar 

  57. Cowling TG (1957) Magnetohydrodynamics, p 6. Interscience Publishers Ltd., Geneva

  58. Whitham GB (1958) On the propagation of shock waves through regions of non-uniform area or flow. J Fluid Mech 4(4):337–360

    Article  MathSciNet  MATH  Google Scholar 

  59. Nath G (2014) Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas. Shock Waves 24(4):415–428

    Article  Google Scholar 

  60. Vishwakarma JP, Yadav AK (2003) Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field. Eur Phys J B 34(2):247–253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeeta Singh.

Ethics declarations

Funding

Not Applicable.

Conflict of interest

None.

Data availability

Not Applicable.

Code availability

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S. Similarity solutions for magnetogasdynamic cylindrical shock wave in rotating non-ideal gas using Lie group theoretic method. J Eng Math 131, 5 (2021). https://doi.org/10.1007/s10665-021-10169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10169-5

Keywords

Navigation