Skip to main content

Advertisement

Log in

Investigation of output voltage, vibrations and dynamic characteristic of 2DOF nonlinear functionally graded piezoelectric energy harvester

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

With the aim of providing the larger frequency band and progress the energy harvesting proficiency of the bistable piezoelectric energy harvester (BPEH), a 2-DOF nonlinear distributed parameter model of BPEH with an elastic magnifier is considered in this paper. This study deals with bimorph beam with functionally graded piezoelectric (FGP) layers carrying concentrated mass at tip while taking into account the geometrical nonlinear terms and the nonlinear magnetic force to enhance energy harvesting performance. By presenting the magnifier, oscillations of the tip are inspired into high-energy orbits. Mathematical model of BPEH with a dynamic magnifier has been developed, then the nonlinear coupled equation of motion derived using Hamilton principle. Initially, frequency response of harvester derived according to harmonic balance method and the adjusted model has been confirmed by parametric studies of earlier lumped parameter model. Analytical results show that the harvesting voltage can be improved with correct selection of design parameters of the magnifier. The proposed 2-DOF harvester system can provide higher output over a wider frequency band and may cause a considerable change in harvester performance. A parametric study is consummated to expose the effects of power law index of FGP on the output voltage and dynamic characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.O. Mathuna, T. ODonnell, R.V. Martinez-Catala, J. Rohan, B. OFlynn, Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3), 613–623 (2008)

    Article  Google Scholar 

  2. B. Ando, S. Baglio, C. Trigona, Autonomous sensors: from standard to advanced solutions [instrumentation notes]. IEEE Instrum. Meas. Mag. 13(3), 33–37 (2010)

    Article  Google Scholar 

  3. R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 23001 (2013)

    Article  Google Scholar 

  4. S. Roundy, On the effectiveness of vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 16(10), 809–823 (2005)

    Article  Google Scholar 

  5. M. Umeda, K. Nakamura, S. Ueha, Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jpn. J. Appl. Phys. 35(5S), 3267 (1996)

    Article  ADS  Google Scholar 

  6. N.A. Aboulfotoh, M.H. Arafa, S.M. Megahed, A self-tuning resonator for vibration energy harvesting. Sens. Actuators A Phys. 201, 328–334 (2013)

    Article  Google Scholar 

  7. X. Bai, Y. Wen, P. Li, J. Yang, X. Peng, X. Yue, Multi-modal vibration energy harvesting utilizing spiral cantilever with magnetic coupling. Sens. Actuators A Phys. 209, 78–86 (2014)

    Article  Google Scholar 

  8. X. Wu, D.-W. Lee, Magnetic coupling between folded cantilevers for high-efficiency broadband energy harvesting. Sens. Actuators A Phys. 234, 17–22 (2015)

    Article  Google Scholar 

  9. M.F. Daqaq, R. Masana, A. Erturk, D.D. Quinn, On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Article  ADS  Google Scholar 

  10. Z. Yang, Y. Zhu, J. Zu, Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations. Smart Mater. Struct. 24(2), 25028 (2015)

    Article  Google Scholar 

  11. K. Jahani, P. Aghazadeh, Investigating the performance of piezoelectric energy harvester including geometrical, damping and material nonlinearities with the method of multiple scales. Mod. Mech. Eng. 16(4), 354–360 (2016)

    Google Scholar 

  12. D. Zhao et al., Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method. Mater. Res. Express 5(5), 55502 (2018)

    Article  Google Scholar 

  13. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69(1), 1–3 (2009)

    Article  ADS  Google Scholar 

  14. A. Erturk, J. Hoffmann, D.J. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

    Article  ADS  Google Scholar 

  15. M.A. Karami, D.J. Inman, Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330(23), 5583–5597 (2011)

    Article  ADS  Google Scholar 

  16. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(7), 75022 (2011)

    Article  Google Scholar 

  17. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001 (2011)

    Article  ADS  Google Scholar 

  18. P. Kim, J. Seok, A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333(21), 5525–5547 (2014)

    Article  ADS  Google Scholar 

  19. B. Lin, V. Giurgiutiu, Modeling and testing of PZT and PVDF piezoelectric wafer active sensors. Smart Mater. Struct. 15(4), 1085 (2006)

    Article  ADS  Google Scholar 

  20. B. Yoo, A.S. Purekar, Y. Zhang, D.J. Pines, Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels. Smart Mater. Struct. 19(7), 75017 (2010)

    Article  Google Scholar 

  21. H. Cho, M. Hasanian, S. Shan, C.J. Lissenden, Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing. NDT E Int. 102, 35–46 (2019)

    Article  Google Scholar 

  22. Y. Amini, H. Emdad, M. Farid, Finite element modeling of functionally graded piezoelectric harvesters. Compos. Struct. 129, 165–176 (2015)

    Article  Google Scholar 

  23. J. Yang, H.J. Xiang, Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators. Smart Mater. Struct. 16(3), 784 (2007)

    Article  ADS  Google Scholar 

  24. M. Komijani, J.N. Reddy, M.R. Eslami, Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. J. Mech. Phys. Solids 63, 214–227 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Dietze, M. Es-Souni, Structural and functional properties of screen-printed PZT–PVDF–TrFE composites. Sens. Actuators A Phys. 143(2), 329–334 (2008)

    Article  Google Scholar 

  26. D. Zhang, D. Wang, J. Yuan, Q. Zhao, Z.-Y. Wang, M.-S. Cao, Structural and electrical properties of PZT/PVDF piezoelectric nanocomposites prepared by cold-press and hot-press routes. Chin. Phys. Lett. 25(12), 4410–4413 (2008)

    Article  ADS  Google Scholar 

  27. J.-J. Choi, B.-D. Hahn, J. Ryu, W.-H. Yoon, B.-K. Lee, D.-S. Park, Preparation and characterization of piezoelectric ceramic-polymer composite thick films by aerosol deposition for sensor application. Sens. Actuators A Phys. 153(1), 89–95 (2009)

    Article  Google Scholar 

  28. M. Derayatifar, M. Tahani, H. Moeenfard, Nonlinear analysis of functionally graded piezoelectric energy harvesters. Compos. Struct. 182, 199–208 (2017)

    Article  Google Scholar 

  29. D. Vasic, F. Costa, Modeling of piezoelectric energy harvester with multi-mode dynamic magnifier with matrix representation. Int. J. Appl. Electromagn. Mech. 43(3), 237–255 (2013)

    Article  Google Scholar 

  30. H. Wang, X. Shan, T. Xie, An energy harvester combining a piezoelectric cantilever and a single degree of freedom elastic system. J. Zhejiang Univ. Sci. A 13(7), 526–537 (2012)

    Article  Google Scholar 

  31. W. Zhou, G.R. Penamalli, L. Zuo, An efficient vibration energy harvester with a multi-mode dynamic magnifier. Smart Mater. Struct. 21(1), 15014 (2011)

    Article  Google Scholar 

  32. A. Aladwani, M. Arafa, O. Aldraihem, A. Baz, Cantilevered piezoelectric energy harvester with a dynamic magnifier. J. Vib. Acoust. 134(3), 31004 (2012)

    Article  Google Scholar 

  33. L. Tang, J. Wang, Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 228(11), 3997–4015 (2017)

    Article  MathSciNet  Google Scholar 

  34. L. Tang, Y. Yang, A multiple-degree-of-freedom piezoelectric energy harvesting model. J. Intell. Mater. Syst. Struct. 23(14), 1631–1647 (2012)

    Article  Google Scholar 

  35. D. Zhao, M. Gan, C. Zhang, J. Wei, S. Liu, Analysis of broadband characteristics of two degree of freedom bistable piezoelectric energy harvester. Mater. Res. Express 5, 085704 (2018)

    Article  ADS  Google Scholar 

  36. G.-Q. Wang, W.-H. Liao, A bistable piezoelectric oscillator with an elastic magnifier for energy harvesting enhancement. J. Intell. Mater. Syst. Struct. 28(3), 392–407 (2017)

    Article  Google Scholar 

  37. A. Erturk, D.J. Inman, An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 25009 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abbasi.

Appendix

Appendix

$$\begin{aligned}&M_{0}={\int _{V_{s}}}^0 {\rho _{s}\phi ^{2}(x)\mathrm{d}x} +\sum \limits _{i=1}^2 {\int _{{V_pi}}}^0 {\rho _{pi}(z)\phi ^{2}\left( x \right) \mathrm{d}x+M_{t}\phi ^{2}\left( L \right) +I_{t}\phi ^{'2}\left( L \right) } \\&K_{0}={\int _{V_{s}}}^0 {C_{s}{[-z\phi }^{''}(x)]^{2}{\mathrm{d}V}_{S}} +\sum \limits _{i=1}^2 {\int _{{V_pi}}}^0 {C_{11}^{E}(z)[{-z\phi }^{''}(x)]^{2}{\mathrm{d}V}_{pi}} \\&B_{2}={\int _{V_{s}}}^0 {\rho _{s}\phi (x)\mathrm{d}V_{s}} +\sum \limits _{i=1}^2 {\int _{{V_pi}}}^0 {\rho _{pi}(z)\phi \left( x \right) {\mathrm{d}V}_{pi}+M_{t}\phi \left( L \right) } \\&\alpha =\sum \limits _{i=1}^2 {\int _{{V_pi}}}^0 {C_{s}(z){[-z\phi }^{''}\left( x \right) e_{31}(z)[-\mathrm {\nabla }\psi \left( z \right) ]{\mathrm{d}V}_{pi}} \\&C_{p}=\sum \limits _{i=1}^2 {\int _{{V_pi}}}^0 {\varepsilon _{33}^{s}(z)[-\nabla \psi _{v}\left( z \right) ]^{2}{\mathrm{d}V}_{pi}} \\&k_{1}=\frac{\mu _{0}M_{A}V_{A}M_{B}V_{B}}{\mathrm {2\pi }}\left[ 6\phi ^{2}\left( L \right) +d^{2}\phi ^{'2}\left( L \right) +3d\phi \left( L \right) \phi ^{'}\left( L \right) \right] k/d^{5} \\&k_{3}=\left( \int _0^L {\varphi \left( x \right) \varphi ^{''}\left( x \right) \mathrm{d}x} \right) \left( \int _0^L {{\varphi ^{'}\left( x \right) }^{2}\mathrm{d}x} \right) \nonumber \\&\qquad \quad +\,\frac{{3\mu }_{0}M_{A}V_{A}M_{B}V_{B}}{\mathrm {8\pi }} \frac{\left[ 30\phi ^{4}\left( L \right) +13d^{2}\phi ^{2}\left( L \right) \phi ^{'2}\left( L \right) +20d\phi ^{3}\left( L \right) \phi ^{'}\left( L \right) \right] }{d^{7}} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M.M., Abbasi, M. & Forouhandeh, F. Investigation of output voltage, vibrations and dynamic characteristic of 2DOF nonlinear functionally graded piezoelectric energy harvester. Eur. Phys. J. Plus 135, 298 (2020). https://doi.org/10.1140/epjp/s13360-020-00276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00276-0

Navigation