Skip to main content
Log in

Effect of anisotropic Cairns distribution on drift magnetosonic wave

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Non-monotonic shoulder like velocity distributions and high-energy tails are often observed in space plasmas, e.g., in solar wind. In this work, these effects are studied for obliquely propagating drift mode in an anisotropic and spatially inhomogeneous environment of solar wind at about 1 AU, using the Cairns distribution. Different cases are studied to see the interrelationship between Cairns parameter \(\Lambda\), density inhomogeneity factor \(\eta\), and the temperature anisotropy \( T_{\Vert \alpha}/T_{\perp \alpha} > 1\). It is observed that while the temperature anisotropy alone gives only damping on kinetic scale for drift magnetosonic mode, but in conjunction with \(\Lambda\) (showing the extent of non-thermality), it can generate instability. The three interesting effects together automatically satisfy the firehose instability condition. Further, when we consider reactive-type instability, the electron temperature anisotropy \( T_{\Vert e}/T_{\perp e} > 1\) can independently generate resonant firehose instability for \(R(\omega ) = 0\), which develops at oblique propagation of the wave at comparatively high \( \beta_{\Vert e}\). These results are quite important for all non-thermal environments where the plasma is inhomogeneous and temperature anisotropic, such as in space and astrophysical plasmas. The results might be helpful in understanding the phenomena of heating and acceleration of particles in solar corona and solar wind via Landau damping and in explaining the physical nature of coronal Extreme-ultraviolet Imaging Telescope (EIT) waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Feldman, R.C. Anderson, S.J. Bame, S.P. Gary, J.T. Gosling, D.J. McComas, M.F. Thomsen, G. Paschmann, M.M. Hoppe, J. Geophys. Res. 88, 96 (1983)

    ADS  Google Scholar 

  2. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res. 108, 1025 (2003)

    Google Scholar 

  3. F. Verheest, S.R. Pillay, Nonlin. Process. Geophys. 15, 551 (2008)

    ADS  Google Scholar 

  4. I. Kourakis, S. Sultana, M.A. Hellberg, Plasma Phys. Control. Fusion 54, 124001 (2012)

    ADS  Google Scholar 

  5. R.A. Cairns, A.A. Mamun, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    ADS  Google Scholar 

  6. P.O. Dovner, A.I. Eriksson, R. Bostrom, B. Holback, Geophys. Res. Lett. 21, 1827 (1994)

    ADS  Google Scholar 

  7. R. Bostrom, IEEE Trans. Plasma Sci. 20, 756 (1992)

    ADS  Google Scholar 

  8. A.A. Abid, S. Ali, J. Du, A.A. Mamun, Phys. Plasmas 22, 084507 (2015)

    ADS  Google Scholar 

  9. S.A. Elwakil, E.K. El-Shewy, M.A. Zahran, Phys. Scr. 75, 803 (2007)

    ADS  Google Scholar 

  10. F. Hadi, A. Rahman, A. Qamar, Phys. Plasmas 24, 104503 (2017)

    ADS  Google Scholar 

  11. E. Marsch, C.K. Goertz, K. Richter, J. Geophys. Res. 87, 5030 (1982)

    ADS  Google Scholar 

  12. M.N.S. Qureshi, H.A. Shah, G. Murtaza, S.J. Schwartz, F. Mahmood, Phys. Plasmas 11, 3819 (2004)

    ADS  Google Scholar 

  13. I.A. Khan, G. Murtaza, Plasma Sci. Technol. 20, 035302 (2018)

    ADS  Google Scholar 

  14. J.C. Dorelli, J.D. Scudder, J. Geophys. Res. 108, 1294 (2003)

    Google Scholar 

  15. I. Habumugisha, S.K. Anguma, E. Jurua, N. Noreen, Int. J. Astron. Astrophys. (2016) https://doi.org/10.4236/ijaa.2016.61001

    ADS  Google Scholar 

  16. A. Mamun, Phys. Rev. E 55, 1852 (1997)

    ADS  Google Scholar 

  17. R.A. Tang, J.K. Xue, Phys. Plasmas 11, 3939 (2004)

    ADS  Google Scholar 

  18. N.F. Abdo, J. Taibah Univ. Sci. 11, 617 (2017)

    Google Scholar 

  19. M.U. Malik, W. Masood, A.M. Mirza, Phys. Plasmas 24, 102120 (2017)

    ADS  Google Scholar 

  20. K. Azra, Z. Iqbal, G. Murtaza, Commun. Theor. Phys. 69, 699 (2018)

    ADS  Google Scholar 

  21. I.A. Khan, Z. Iqbal, H. Naim, G. Murtaza, Phys. Plasmas 25, 082111 (2018)

    ADS  Google Scholar 

  22. E.C. Shoub, Astrophys. J. 266, 339 (1983)

    ADS  Google Scholar 

  23. M. Maksimovic, I. Zouganelis, J.-Y. Chaufray, K. Issautier, E.E. Scime, J.E. Littleton, E. Marsch, D.J. McComas, C. Salem, R.P. Lin, H. Elliott, J. Geophys. Res. 110, A09104 (2005)

    ADS  Google Scholar 

  24. D. Bara, M. Djebli, D.B. Doumaz, Laser Part. Beams 32, 391 (2014)

    ADS  Google Scholar 

  25. J. Vranjes, S. Poedts, Mon. Not. R. Astron. Soc. 408, 1835 (2010)

    ADS  Google Scholar 

  26. H. Naim, M.F. Bashir, G. Murtaza, Phys. Plasmas 21, 102112 (2014)

    ADS  Google Scholar 

  27. J.A. Miller, Astrophys. J. 491, 939 (1997)

    ADS  Google Scholar 

  28. E. Marsch, Living Rev. Sol. Phys. 3, 1 (2006)

    ADS  Google Scholar 

  29. E.W. Greenstadt, R.L. McPherrson, R.R. Anderson, F.L. Scarf, J. Geophys. Res. 91, 13398 (1986)

    ADS  Google Scholar 

  30. G. Pallocchia, J. Geophys. Res. 118, 331 (2013)

    Google Scholar 

  31. F.L. Xiao, Q. Zhou, Y. He, C. Yang, S. Liu, D.N. Baker, H.E. Spence, G.D. Reeves, H.O. Funsten, J.B. Blake, Geophys. Res. Lett. 42, 7287 (2015)

    ADS  Google Scholar 

  32. S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, New York, 1993)

  33. L. Chen, D.J. Wu, Phys. Plasmas 17, 062107 (2010)

    ADS  Google Scholar 

  34. S.M. Shaaban, M. Lazar, R.A. López, H. Fichtner, S. Poedts, Mon. Not. R. Astron. Soc. 483, 5642 (2019)

    ADS  Google Scholar 

  35. J.C. Kasper, A.J. Lazarus, S.P. Gary, A. Szabo, AIP Conf. Ser. 679, 538 (2003)

    ADS  Google Scholar 

  36. P. Hellinger, P. Trávníček, J.C. Kasper, A.J. Lazarus, Geophys. Res. Lett. 33, L09101 (2006)

    ADS  Google Scholar 

  37. S. Stverák, P. Trávníček, E. Maksimovic, E. Marsch, A.N. Fazakerley, E.E. Scime, J. Geophys. Res. 113, A03103 (2008)

    ADS  Google Scholar 

  38. M. Lazar, S.M. Shaaban, S. Poedts, S. Stverák, Mon. Not. R. Astron. Soc. 464, 564 (2016)

    ADS  Google Scholar 

  39. J. Seough, Peter H. Yoon, J. Hwang, Phys. Plasmas 22, 012303 (2015)

    ADS  Google Scholar 

  40. J.V. Hollweg, S.A. Markovskii, J. Geophys. Res. 107, 1080 (2002)

    Google Scholar 

  41. S.R. Cranmer, Astrophys. J. 532, 1197 (2000)

    ADS  Google Scholar 

  42. A.F. Vinas, H.K. Wong, A.J. Klimas, Astrophys. J. 528, 509 (2000)

    ADS  Google Scholar 

  43. X. Li, S.R. Habbal, J. Geophys. Res. 105, 27377 (2000)

    ADS  Google Scholar 

  44. S.P. Gary, K. Nishimura, Phys. Plasmas 10, 3571 (2003)

    ADS  Google Scholar 

  45. E. Camporeale, D. Burgess, J. Geophys. Res. 113, A07107 (2008)

    ADS  Google Scholar 

  46. P. Hellinger, P.M. Trávníček, V.K. Decyk, D. Schriver, J. Geophys. Res. 119, 59 (2014)

    Google Scholar 

  47. L.N. Hau, W.Z. Fu, Phys. Plasmas 14, 110702 (2007)

    ADS  Google Scholar 

  48. Hasegawa, Plasma Instabilities and Nonlinear Effect (Springer-Verlag, New York, 1975) p. 71

  49. G. Livadiotis, J. Geophys. Res. 120, 1607 (2015)

    Google Scholar 

  50. B.J. Wang, L.N. Hau, Plasma Phys. Control. Fusion 57, 095012 (2015)

    ADS  Google Scholar 

  51. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Rep. Prog. Phys. 75, 056401 (2012)

    ADS  Google Scholar 

  52. P. Mora, T. Grismayer, Phys. Rev. Lett. 102, 145001 (2009)

    ADS  Google Scholar 

  53. J. Vranjes, S. Poedts, Mon. Not. R. Astron. Soc. 398, 918 (2009)

    ADS  Google Scholar 

  54. J. Vranjes, S. Poedts, J. Phys.: Conf. Ser. 511, 012054 (2014)

    Google Scholar 

  55. H. Naim, M.F. Bashir, J. Vranjes, G. Murtaza, Phys. Plasmas 22, 062117 (2015)

    ADS  Google Scholar 

  56. Ch. Uzma, H. Naim, G. Murtaza, Phys. Plasmas 24, 043701 (2017)

    ADS  Google Scholar 

  57. C.S. Liu, V.K. Tripathi, Phys. Rep. 130, 143 (1986)

    ADS  Google Scholar 

  58. M. Salimullah, M.M. Rahman, I. Zeba, H.A. Shah, G. Murtaza, P.K. Shukla, Phys. Plasmas 13, 122102 (2006)

    ADS  Google Scholar 

  59. H. Naim, G. Murtaza, Phys. Lett. A 377, 2348 (2013)

    ADS  MathSciNet  Google Scholar 

  60. G. Paesold, A.O. Benz, Astron. Astrophys. 351, 741 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Iqbal.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naim, H., Khan, I.A., Iqbal, Z. et al. Effect of anisotropic Cairns distribution on drift magnetosonic wave. Eur. Phys. J. Plus 134, 442 (2019). https://doi.org/10.1140/epjp/i2019-12846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12846-0

Navigation