Skip to main content
Log in

Instability and energy transport of kinetic Alfvén waves in the solar corona

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Kinetic Alfvén waves become unstable when the field-aligned drift velocity is larger than the phase velocity of the waves. The unstable wave can grow and play a very important role in the energy transport in solar coronal plasma. In this paper, we consider field-aligned drift and temperature anisotropic velocity distribution function to study the energy transport mechanism. We numerically solve the dispersion relation and find two different modes: the usual kinetic Alfvén wave and the modified kinetic Alfvén wave. The ratios of the electric field to the magnetic field of both modes are shown to decrease when the field-aligned drift velocity gets large. These results show that for identifying the kinetic Alfvén waves in solar coronal plasma, the field-aligned current must be considered. On further analysis, we find that the Poynting flux associated with the waves either enhances or reduces depending upon the ratio of the drift to Alfvén speed. In the case of the kinetic Alfvén waves, when the drift velocity is less than the Alfvén speed, the Poynting flux is significantly reduced and the wave gets damped as it travels forward. However, when the drift velocity is larger than the Alfvén speed, the wave grows, i.e., the Poynting flux becomes large, as the wave moves. The Poynting flux of the modified kinetic Alfvén wave sensitively depends on the drift velocity. Even for very small variations, the wave becomes significantly unstable and can carry a large amount of energy. The electromagnetic energies of the damped/unstable waves are converted into heat energy as the waves travel across.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: In more realistic situations, all the variations must be taken into account, and that will be done in our future research.]

References

  1. C.E. Parnell, I. De Moortel, Philosophical transactions of the royal society a: mathematical. Phys. Eng. Sci. 370, 3217 (2012)

    Google Scholar 

  2. H. Alfvén, Phys. Rev. 72, 88 (1947)

    Article  ADS  Google Scholar 

  3. S. Tomczyk, S. McIntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson, Science 317, 1192 (2007)

    Article  ADS  Google Scholar 

  4. S. Mumford, V. Fedun, R. Erdélyi, Astrophys. J. 799, 6 (2015)

    Article  ADS  Google Scholar 

  5. R. Kopp, G. Pneuman, Sol. Phys. 50, 85 (1976)

    Article  ADS  Google Scholar 

  6. T. van Doorsselaere, A.K. Srivastava, P. Antolin, N. Magyar, S. Vasheghani Farahani, H. Tian, D. Kolotkov, L. Ofman, M. Guo, I. Arregui et al., Space Sci. Rev. 216, 1–30 (2020)

    Article  Google Scholar 

  7. Y. Voitenko, M. Goossens, Space Sci. Rev. 122, 255 (2006)

    Article  ADS  Google Scholar 

  8. A. Hasegawa, L. Chen, Phys. Rev. Lett. 35, 370 (1975)

    Article  ADS  Google Scholar 

  9. M. Medvedev, Phys. Plasmas 6, 2191 (1999)

    Article  ADS  Google Scholar 

  10. D. Wu, L. Yang, Astrophys. J. 659, 1693 (2007)

    Article  ADS  Google Scholar 

  11. P. Damiano, J. Johnson, C. Chaston, J. Geophys. Res. Space Phys. 120, 5623 (2015)

    Article  ADS  Google Scholar 

  12. P. Damiano, J.R. Johnson, C. Chaston, J. Geophys. Res. Space Phys. 121, 10 (2016)

    Article  Google Scholar 

  13. X. An, J. Bortnik, X.-J. Zhang, J. Geophys. Res. Space Phys. 126, e2020JA028643 (2021)

    Article  ADS  Google Scholar 

  14. G.G. Howes, K.G. Klein, T.C. Li, J. Plasma Phys. 83, 705830102 (2017)

    Article  Google Scholar 

  15. Y.M. Voitenko, Sol. Phys. 168, 219 (1996)

    Article  ADS  Google Scholar 

  16. Y.M. Voitenko, Sol. Phys. 182, 411 (1998)

    Article  ADS  Google Scholar 

  17. L. Chen, D. Wu, G. Zhao, J. Tang, J. Huang, Astrophys. J. 793, 13 (2014)

    Article  ADS  Google Scholar 

  18. L. Chen, D. Wu, Astrophys. J. 754, 123 (2012)

    Article  ADS  Google Scholar 

  19. M. Bashir, Z. Iqbal, I. Aslam, G. Murtaza, Phys. Plasmas 17, 102112 (2010)

    Article  ADS  Google Scholar 

  20. R.L. Lysak, W. Lotko, J. Geophys. Res. Space Phys. 101, 5085 (1996)

    Article  ADS  Google Scholar 

  21. R. L. Lysak and Y. Song, J. Geophys. Res. Space Phys. 108 (2003)

  22. I.A. Khan, T.H. Khokhar, H. Shah, G. Murtaza, Physica A 535, 122385 (2019)

    Article  MathSciNet  Google Scholar 

  23. I.A. Khan, Z. Iqbal, G. Murtaza, Eur. Phys. J. Plus 134, 1 (2019)

    Article  Google Scholar 

  24. I.A. Khan, Z. Iqbal, G. Murtaza, Mon. Not. R. Astron. Soc. 491, 2403 (2020)

    Article  ADS  Google Scholar 

  25. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991)

    Article  ADS  Google Scholar 

  26. R. Rosner, L. Golub, B. Coppi, G. Vaiana, Astrophys. J. 222, 317 (1978)

    Article  ADS  Google Scholar 

  27. B. Tan, H. Ji, G. Huang, T. Zhou, Q. Song, Y. Huang, Sol. Phys. 239, 137 (2006)

    Article  ADS  Google Scholar 

  28. H. Naim, M. Bashir, G. Murtaza, Phys. Plasmas 21, 032120 (2014)

    Article  ADS  Google Scholar 

  29. R.L. Lysak, Geophys. Res. Lett. 25, 2089 (1998)

    Article  ADS  Google Scholar 

  30. M. Salimullah, M. Islam, A. Banerjee, M. Nambu, Phys. Plasmas 8, 3510 (2001)

    Article  ADS  Google Scholar 

  31. P. Shukla, R. Bingham, J. McKenzie, W. Axford, Sol. Phys. 186, 61 (1999)

    Article  ADS  Google Scholar 

  32. J. Vranjes, S. Poedts, Astrophys. J. 719, 1335 (2010)

    Article  ADS  Google Scholar 

  33. J. Zhao, D. Wu, J. Lu, Astrophys. J. 767, 109 (2013)

    Article  ADS  Google Scholar 

  34. N. Bian, E. Kontar, J. Brown, Astron. Astrophys. 519, A114 (2010)

    Article  ADS  Google Scholar 

  35. S.R. Cranmer, Astrophys. J. 862, 6 (2018)

    Article  ADS  Google Scholar 

  36. J. Heyvaerts, E.R. Priest, Astron. Astrophys. 117, 220 (1983)

    ADS  Google Scholar 

  37. R.K. Ulrich, Astrophys. J. 465, 436 (1996)

    Article  ADS  Google Scholar 

  38. J. Zhao, D. Wu, J. Lu, Astrophys. J. 735, 114 (2011)

    Article  ADS  Google Scholar 

  39. J. Zhao, Y. Voitenko, D. Wu, J. De Keyser, Astrophys. J. 785, 139 (2014)

    Article  ADS  Google Scholar 

  40. J. Zhao, Y. Voitenko, Y. Guo, J. Su, D. Wu, Astrophys. J. 811, 88 (2015)

    Article  ADS  Google Scholar 

  41. A.K. Srivastava, J. Shetye, K. Murawski, J.G. Doyle, M. Stangalini, E. Scullion, T. Ray, D.P. Wójcik, B.N. Dwivedi, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  42. Y.M. Voitenko, Sol. Phys. 161, 197 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran A. Khan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xunaira, S., Khan, I.A., Shamir, M. et al. Instability and energy transport of kinetic Alfvén waves in the solar corona. Eur. Phys. J. Plus 138, 711 (2023). https://doi.org/10.1140/epjp/s13360-023-04352-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04352-z

Navigation