Skip to main content
Log in

An advanced method with convergence analysis for solving space-time fractional partial differential equations with multi delays

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This study considers the space-time fractional partial differential equations with multi delays under a unique formulation, proposing a numerical method involving advanced matrix system. This matrix system is made up of the matching polynomial of complete graph together with fractional Caputo and Jumarie derivative types. Also, the derivative types are scrutinized to determine which of them is more proper for the method. Convergence analysis of the method is established via an average value of residual function using double integrals. The obtained solutions are improved with the aid of a residual error estimation. A general computer program module, which contains few steps, is developed. Tables and figures prove the efficiency and simplicity of the method. Eventually, an algorithm is given to illustrate the basis of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.G. Sun, W. Chen, C. Li, Y.Q. Chen, Physica A 389, 2719 (2010)

    Article  ADS  Google Scholar 

  2. A.V. Chechkin, R. Gorenflo, I.M. Sokolov, J. Phys. A 38, 679 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. J. Sabatier, O.P. Agrawal, Advances in Fractional Calculus, in Theoretical Developments and Applications in Physics and Engineering (Springer, 2007)

  4. V.A. Vyawahare, P.S.V. Nataraj, in Proceedings of the 2013 European Control Conference (ECC) (Zürich, Switzerland, 2013)

  5. X.-N. Cao, J.-L. Fu, H. Huang, Adv. Appl. Math. Mech. 4, 848 (2012)

    Article  MathSciNet  Google Scholar 

  6. M.S. Tavazoei, M. Haeri, Phys. Lett. A 372, 798 (2008)

    Article  ADS  Google Scholar 

  7. H. Thabet, S. Kendre, Chaos, Solitons Fractals 109, 238 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. K. Moaddy, S. Momani, I. Hashim, Comput. Math. Appl. 61, 1209 (2011)

    Article  MathSciNet  Google Scholar 

  9. K.S. Tasneem, D.J. Higham, Appl. Numer. Math. 24, 425 (1997)

    Article  MathSciNet  Google Scholar 

  10. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  11. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, San Diego 2006)

  12. L. Zhu, Y. Wang, Nonlinear Dyn. 89, 1915 (2017)

    Article  Google Scholar 

  13. F.A. Rihan, Numer. Methods Partial Differ. Equ. 26, 1556 (2009)

    Google Scholar 

  14. S.Yu. Reutskiy, Appl. Math. Model. 45, 238 (2017)

    Article  MathSciNet  Google Scholar 

  15. H. Zhang, F. Liu, V. Anh, Appl. Math. Comput. 217, 2534 (2010)

    MathSciNet  Google Scholar 

  16. D.B. Dhaigude, G.A. Birajdar, Adv. Appl. Math. Mech. 6, 107 (2014)

    Article  MathSciNet  Google Scholar 

  17. N. Kurt, M. Sezer, J. Franklin Inst. 345, 839 (2008)

    Article  MathSciNet  Google Scholar 

  18. N. Baykuş, M. Sezer, Numer. Methods Partial Differ. Equ. 27, 1327 (2011)

    Article  Google Scholar 

  19. N. Baykuş Savaşaneril, M. Sezer, Appl. Math. Inf. Sci. 11, 1795 (2017)

    Article  MathSciNet  Google Scholar 

  20. B. Bülbül, M. Sezer, Int. J. Comput. Math. 88, 533 (2011)

    Article  MathSciNet  Google Scholar 

  21. S, Yüzbaşi, N. Sahin, M. Sezer, Math. Methods Appl. Sci. 35, 1126 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ö.K. Kürkçü, E. Aslan, M. Sezer, Appl. Math. Comput. 276, 324 (2016)

    MathSciNet  Google Scholar 

  23. Ö.K. Kürkçü, E. Aslan, M. Sezer, Sains Malays. 46, 335 (2017)

    Article  Google Scholar 

  24. Ö.K. Kürkçü, E. Aslan, M. Sezer, Appl. Numer. Math. 121, 134 (2017)

    Article  MathSciNet  Google Scholar 

  25. Ö.K. Kürkçü, E. Aslan, M. Sezer, Ö. I, Int. J. Comput. Meth. 15, 1850039 (2018)

    Article  Google Scholar 

  26. Ö.K. Kürkçü, E. Aslan, M. Sezer, Turk. J. Math. 43, 373 (2019)

    Article  Google Scholar 

  27. M. Caputo, Elasticità e Dissipazione (Zanichelli, Bologna, 1969)

  28. G. Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    Article  MathSciNet  Google Scholar 

  29. U. Ghosh, S. Sengupta, S. Sarkar, S. Das, Eur. J. Acad. Essays 2, 70 (2015)

    Google Scholar 

  30. E.J. Farrell, J. Combin. Theory Ser. B 27, 75 (1979)

    Article  MathSciNet  Google Scholar 

  31. I. Gutman, Publ. Inst. Math. Beograd 22, 63 (1977)

    MathSciNet  Google Scholar 

  32. I. Gutman, Match Commun. Math. Co. 6, 75 (1979)

    Google Scholar 

  33. J. Aihara, Bull. Chem. Soc. Jpn. 52, 1529 (1979)

    Article  Google Scholar 

  34. F. Harary, Graph Theory (Addison-Wesley, New York, 1994)

  35. J.L. Gross, J. Yellen, P.F. Zhang, Handbook of Graph Theory (CRC Press, New York, 2013)

  36. E. Aslan, Bull. Int. Math. Virtual Inst. 4, 53 (2014)

    MathSciNet  Google Scholar 

  37. G. Bacak-Turan, A. Kirlangiç, Ars Combin. 102, 333 (2011)

    MathSciNet  Google Scholar 

  38. G. Gunther, B.L. Hartnell, Proceedings of the Eighth Manitoba Conference on Numerical Mathematics and Computing, Vol. 285 (1978)

  39. O.J. Heilmann, E.H. Lieb, Commun. Math. Phys. 25, 190 (1972)

    Article  ADS  Google Scholar 

  40. E.W. Weisstein, Matching Polynomial, in MathWorld: A Wolfram Web Resource, http://mathworld.wolfram.com/MatchingPolynomial.html

  41. H. Hosoya, Discr. Appl. Math. 19, 239 (1988)

    Article  Google Scholar 

  42. W. Yan, Y.-N. Yeh, Discr. Appl. Math. 157, 195 (2009)

    Article  Google Scholar 

  43. K. Diethelm, The Analysis of Fractional Differential Equations (Springer-Verlag, Berlin Heidelberg, 2010)

  44. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, with Formulas, graphs, and Mathematical Tables, in Appl. Math. Ser., Vol. 55 (National Bureau of Standards, 1964)

  45. M. Du, X. Qiao, B. Wang, Y. Wang, B. Gao, Appl. Math. Comput. 347, 15 (2019)

    MathSciNet  Google Scholar 

  46. X.Q. Du, S. Gao, Acta Oceanol. Sin. 34, 121 (2012)

    Google Scholar 

  47. N. Qiu, J. Shenyang Univ. 28, 170 (2016)

    Google Scholar 

  48. Y.L. Wang, L.J. Su, Comput. Math. Appl. 61, 421 (2011)

    Article  MathSciNet  Google Scholar 

  49. V.R. Hosseini, W. Chen, Z. Avazzadeh, Eng. Anal. Bound. Elem. 38, 31 (2014)

    Article  MathSciNet  Google Scholar 

  50. M. Zheng, F. Liu, V. Anh, I. Turner, Appl. Math. Model. 40, 4970 (2016)

    Article  MathSciNet  Google Scholar 

  51. M. Dehghan, M. Safarpoor, M. Abbaszadeh, J. Comput. Appl. Math. 290, 174 (2015)

    Article  MathSciNet  Google Scholar 

  52. C. Li, W. Deng, Adv. Appl. Math. Mech. 9, 282 (2017)

    Article  MathSciNet  Google Scholar 

  53. A. Mohebbi, M. Abbaszadeh, M. Dehghan, J. Comput. Phys. 240, 36 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  54. F.H. Zeng, C.P. Li, F.W. Liu, I. Turner, SIAM J. Sci. Comput. 37, A55 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömür Kıvanç Kürkçü.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kıvanç Kürkçü, Ö., Aslan, E. & Sezer, M. An advanced method with convergence analysis for solving space-time fractional partial differential equations with multi delays. Eur. Phys. J. Plus 134, 393 (2019). https://doi.org/10.1140/epjp/i2019-12761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12761-4

Navigation