Skip to main content

Advertisement

Log in

Fractional derivatives applied to MSEIR problems: Comparative study with real world data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present study, an epidemiological model (MSEIR) of varicella disease outbreak, also called the chickenpox, among school children in the Shenzhen city of China in 2015 is proposed under three most commonly used approaches, such as the Caputo, Caputo-Fabrizio and the Atangana-Baleanu-Caputo operators, while taking care of the dimensional consistency of the proposed model. With the help of the fixed point theory, it is proved that the dynamical model under consideration possesses a unique solution. Numerical simulations are carried out for the analysis of the model. Availability of the real data helps to provide evidence for the claims made in the present analysis for the three operators under consideration. Using the root sum squared approach, the efficiency rate of the fractional-order versions is found to be about 20%, 22.5% and 24.7% for the Caputo, the Caputo-Fabrizio and the Atangana-Baleanu-Caputo operators, respectively, for this particular MSEIR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Reid, J.K. Taubenberger, J. Gen. Virol. 84, 2285 (2003)

    Article  Google Scholar 

  2. B.A. Lipsky, A.R. Berendt, P.B. Cornia, J.C. Pile, E.J. Peters, D.G. Armstrong, M.S. Pinzur, Clin. Infect. Dis. 54, 132 (2012)

    Article  Google Scholar 

  3. S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani, Ecol. Lett. 9, 467 (2006)

    Article  Google Scholar 

  4. W.O. Kermack, A.G. McKendrick, Proc. R. Soc. London Series A 115, 700 (1927)

    Article  ADS  Google Scholar 

  5. K. Diethelm, Nonlinear Dyn. 71, 613 (2013)

    Article  Google Scholar 

  6. S. Ullah, M.A. Khan, M. Farooq, Chaos, Solitons Fractals 116, 63 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. K.M. Owolabi, Eur. Phys. J. Plus 133, 15 (2018)

    Article  Google Scholar 

  8. J. Singh, D. Kumar, Z. Hammouch, A. Atangana, Appl. Math. Comput. 316, 504 (2018)

    MathSciNet  Google Scholar 

  9. K.M. Owolabi, A. Atangana, Comput. Appl. Math. 37, 2166 (2018)

    Article  MathSciNet  Google Scholar 

  10. C.J. Zuñiga-Aguilar, J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, H.M. Romero-Ugalde, Eur. Phys. J. Plus 133, 13 (2018)

    Article  Google Scholar 

  11. K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 133, 43 (2018)

    Article  Google Scholar 

  12. S. Ullah, M.A. Khan, M. Farooq, Eur. Phys. J. Plus 133, 313 (2018)

    Article  Google Scholar 

  13. M.A. Khan, S. Ullah, M. Farooq, Chaos, Solitons Fractals 116, 227 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.A. Khan, S. Ullah, K.O. Okosun, K. Shah, Adv. Differ. Equ. 2018, 410 (2018)

    Article  Google Scholar 

  15. A. Atangana, Neural Comput. Appl. 26, 1895 (2015)

    Article  Google Scholar 

  16. I. Area, H. Batarfi, J. Losada, J.J. Nieto, W. Shammakh, Á. Torres, Adv. Differ. Equ. 2015, 278 (2015)

    Article  Google Scholar 

  17. A. Yusuf, S. Qureshi, M. Inc, A.I. Aliyu, D. Baleanu, A.A. Shaikh, Chaos 28, 123121 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. M.A. Khan, M. Farhan, S. Islam, E. Bonyah, Discr. Contin. Dyn. Syst. S 12, 455 (2019)

    Google Scholar 

  19. S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Chaos 29, 013143 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Yépez-Martínez, J.F. Gómez-Aguilar, I.O. Sosa, J.M. Reyes, J. Torres-Jiménez, Rev. Mex. Fís. 62, 310 (2016)

    Google Scholar 

  21. A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 114, 516 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Atangana, J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 1 (2018)

    Article  Google Scholar 

  23. J.F. Gómez-Aguilar, A. Atangana, Eur. Phys. J. Plus 132, 13 (2017)

    Article  Google Scholar 

  24. A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. Escobar-Jiménez, V. Olivares-Peregrino, M. Qurashi, Entropy 19, 55 (2017)

    Article  ADS  Google Scholar 

  25. A. Atangana, J.F. Gómez-Aguilar, Physica A 476, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Atangana, J.F. Gómez-Aguilar, Chaos, Solitons Fractals 102, 285 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. H. Yépez-Martínez, J.F. Gomez-Aguilar, J. Comput. Appl. Math. 346, 247 (2019)

    Article  MathSciNet  Google Scholar 

  28. J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Orduña, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.F. Gómez-Aguilar, L. Torres, H. Yépez-Martínez, D. Baleanu, J.M. Reyes, I.O. Sosa, Adv. Differ. Equ. 2016, 173 (2016)

    Article  Google Scholar 

  30. J.F. Gómez-Aguilar, A. Atangana, V.F. Morales-Delgado, Int. J. Circ. Theory Appl. 45, 1514 (2017)

    Article  Google Scholar 

  31. J.F. Gómez-Aguilar, Eur. Phys. J. Plus 133, 197 (2018)

    Article  Google Scholar 

  32. K.A. Abro, A.A. Memon, A.A. Memon, Analog Integr. Circ. Signal Process. 99, 11 (2019)

    Article  Google Scholar 

  33. O.A. Arqub, B. Maayah, Chaos, Solitons Fractals 117, 117 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. O.A. Arqub, Numer. Methods Partial Differ. Equ. 34, 1759 (2018)

    Article  MathSciNet  Google Scholar 

  35. K.A. Abro, A.A. Memon, M.A. Uqaili, Eur. Phys. J. Plus 133, 113 (2018)

    Article  Google Scholar 

  36. M.S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, M. Mirzazadeh, Univ. Politech. Bucharest Sci. Bull.-Ser. A 80, 26 (2018)

    Google Scholar 

  37. H. Rezazadeh, M.S. Osman, M. Eslami, M. Mirzazadeh, Q. Zhou, S.A. Badri, A. Korkmaz, Nonlinear Eng. 8, 224 (2019)

    Article  ADS  Google Scholar 

  38. M.S. Osman, A. Korkmaz, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, Chin. J. Phys. 56, 2500 (2018)

    Article  Google Scholar 

  39. K.U. Tariq, M. Younis, H. Rezazadeh, S.T.R. Rizvi, M.S. Osman, Mod. Phys. Lett. B 32, 1850317 (2018)

    Article  ADS  Google Scholar 

  40. M.S. Osman, Pramana 88, 67 (2017)

    Article  ADS  Google Scholar 

  41. O.A. Arqub, M. Al-Smadi, Chaos, Solitons Fractals 117, 161 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. H.W. Hethcote, SIAM Rev. 42, 599 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Almeida, A.M.C.B. da-Cruz, N. Martins, M.T.T. Monteiro, Int. J. Dyn. Control (2018) https://doi.org/10.1007/s40435-018-0492-1

  44. I. Podlubny, Fractional Differential Equations, 1st ed. (Elsevier, 1998)

  45. I. Petráš, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, 1st ed. (Springer-Verlag, Berlin, Heidelberg, 2011) https://doi.org/10.1007/978-3-642-18101-6

  46. Z.M. Odibat, N.T. Shawagfeh, Appl. Math. Comput. 186, 286 (2007)

    MathSciNet  Google Scholar 

  47. M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  48. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  49. A.E. Taylor, D.C. Lay, Introduction to Functional Analysis, 2nd ed. (Wiley, New York, 1980)

  50. S.C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 4th ed. (McGraw-Hill Higher Education, 2017)

  51. C. Li, F. Zeng, Numerical Methods for Fractional Calculus, 1st ed. (Chapman and Hall/CRC, 2015)

  52. A. Jajarmi, D. Baleanu, Chaos, Solitons Fractals 113, 221 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Baleanu, A. Jajarmi, M. Hajipour, Nonlinear Dyn. 94, 1 (2018)

    Article  Google Scholar 

  54. X. Tang, S. Zhao, A.P.Y. Chiu, H. Ma, X. Xie, S. Mei, D. Kong, Y. Qin, Z. Chen, X. Wang, D. He, PloS ONE 12, e0177514 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sania Qureshi.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, S., Yusuf, A. Fractional derivatives applied to MSEIR problems: Comparative study with real world data. Eur. Phys. J. Plus 134, 171 (2019). https://doi.org/10.1140/epjp/i2019-12661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12661-7

Navigation