Skip to main content
Log in

On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the existence and uniqueness of the solution of nonlinear fractional differential equations with Mittag–Leffler nonsingular kernel. Two numerical methods to solve this problem are designed, and their stability and error estimates are investigated by discretizing the convolution integral and using the Grönwall’s inequality. Finally, the theoretical results are verified by using five illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)

    MATH  Google Scholar 

  3. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  4. Machado, J.A.T.: Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 62(1), 371–378 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Yang, X.J., Machado, J.A.T., Hristov, J.: Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)

    Article  MathSciNet  Google Scholar 

  6. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: From the Cell to the Ecosystem. Wiley, New York (2014)

    MATH  Google Scholar 

  7. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378. Springer, Wien (2014)

    MATH  Google Scholar 

  8. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Models and Numerical Methods. World Scientific, Berlin (2012)

    MATH  Google Scholar 

  9. Abdelkawy, M.A., Zaky, M.A., Bhrawy, A.H., Baleanu, D.: Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom. Rep. Phys. 67(3), 773–791 (2015)

    Google Scholar 

  10. Yang, X.J., Baleanu, D., Srivastava, H.M.: Local Fractional Integral Transforms and Their Applications. Academic Press, London (2015)

    MATH  Google Scholar 

  11. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)

    Article  Google Scholar 

  12. Liouville, J.: Mémoire sur quelques qustions de géomerie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces quéstions. J. d’École Polytechnique 1(3), 1–69 (1832)

    Google Scholar 

  13. Novikov, V., Wojciechowski, K., Komkova, O., Thiel T.: Anomalous relaxation in dielectrics. Equations with fractional derivatives. Mater. Sci. Pol. 23(4), 977–84 (2005)

  14. Yang, X.J., Machado, J.A.T., Cattani, C., Gao, F.: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)

    Article  Google Scholar 

  15. Sibatov, R., Uchaikin, D.: Fractional relaxation and wave equations for dielectrics characterized by the Havriliak–Negami response function. In: Proceedings of the International Conference New Trends in Nanotechnology and Dynamical Systems, Turkey, Ankara, p. 15 (2010)

  16. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer–Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–89 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Kilbas, A., Saigo, M., Saxena, R.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. F. 15(1), 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  18. Prabhakar, T.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Agila, A., Baleanu, D., Eid, R., Irfanoglu, B.: Applications of the extended fractional Euler–Lagrange equations model to freely oscillating dynamical systems. Rom. J. Phys. 61(3), 350–359 (2016)

    Google Scholar 

  20. Kumar, D., Singh, J., Baleanu, D.: A fractional model of convective radial fins with temperature-dependent thermal conductivity. Rom. Rep. Phys. 69, 103 (2017)

    Google Scholar 

  21. Yang, X.J.: Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Therm. Sci. 21(3), 1161–1171 (2017)

    Article  Google Scholar 

  22. Garrappa, R.: Grünwald-Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun. Nonlinear Sci. Numer. Simul. 38, 178–191 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, X.J., Srivastava, H.M., Machado, J.A.T.: A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm. Sci. 20(2), 753–756 (2016)

    Article  Google Scholar 

  24. Yang, X.J., Machado, J.A.T.: A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A 481, 276–283 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yang, X.J., Gao, F., Machado, J.A.T., Baleanu, D.: A New Fractional Derivative Involving the Normalized Sinc Function Without Singular Kernel. arXiv:1701.05590 (2017)

  26. Yang, X., Srivastava, H., Torres, D., Debbouche, A.: General fractional-order anomalous diffusion with non-singular power-law kernel. Therm. Sci. 21(1), S1–S9 (2017)

    Article  Google Scholar 

  27. Gao, F.: General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems. Therm. Sci. 21(1), S11–S18 (2017)

    Article  Google Scholar 

  28. Yang, X.J.: New general fractional-order rheological models with kernels of Mittag–Leffler functions. Rom. Rep. Phys. 69(4), 1–15 (2017)

    Google Scholar 

  29. Srivastava, H., Tomovski, Ž.: Fractional calculus with an integral operator containing a generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 211, 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Tomovski, Ž., Hilfer, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions. Integr. Transf. Spec. F. 21(11), 797–814 (2010)

    Article  MathSciNet  Google Scholar 

  31. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  32. Miller, K.S., Samko, S.G.: A note on the complete monotonicity of the generalized Mittag–Leffler function. Real Anal. Exch. 23(2), 753–755 (1997–1998)

  33. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag–Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. F. 15(1), 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  34. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag–Leffler functions and their applications. J. Appl. Math. 2011 1–51 (2011), Article ID 298628

    Article  MathSciNet  Google Scholar 

  35. Pskhu, A.V.: On the theory of the continual integro-differentiation operator. Differ. Equ. 40(1), 128–136 (2004)

    Article  MathSciNet  Google Scholar 

  36. Pskhu, A.V.: Partial Differential Equations of Fractional Order. Nauka, Moscow (2005)

    MATH  Google Scholar 

  37. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  38. Ahokposi, D.P., Atangana, A., Vermeulen, D.P.: Modelling groundwater fractal flow with fractional differentiation via Mittag–Leffler law. Eur. Phys. J. Plus 132(165), 1–17 (2017)

    Google Scholar 

  39. Tateishi, A., Ribeiro, H., Lenzi, E.K.: The role of fractional time-derivative operators on anomalous diffusion. Front. Phys. (2017). https://doi.org/10.3389/fphy.2017.00052

  40. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag–Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  Google Scholar 

  41. Djida, J.D., Atangana, A., Area, I.: Numerical computation of a fractional derivative with non-local and non-singular kernel. Math. Model. Nat. Phenom. 12(3), 4–13 (2017)

    Article  MathSciNet  Google Scholar 

  42. Coronel-Escamilla, A., Aguilar, J., Dumitru, B., Escobar-Jimenez, R., Olivares-Peregrino, V., Abundez-Pliego, A.: Formulation of Euler–Lagrange and Hamilton equations involving fractional operators with regular kernel. Adv. Differ. Equ. 283, 1–17 (2016)

    MathSciNet  Google Scholar 

  43. Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag–Leffler kernels. Adv. Differ. Equ. 232, 1–18 (2016)

    MathSciNet  Google Scholar 

  44. Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag–Leffler kernel. Chaos Soliton. Fract. 102, 106–110 (2017)

    Article  MathSciNet  Google Scholar 

  45. Wu, G.C., Baleanu, D., Zeng, S.D., Deng, Z.G.: Discrete fractional diffusion equation. Nonlinear Dyn. 80, 281–286 (2015)

    Article  MathSciNet  Google Scholar 

  46. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag–Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 10, 1098–1107 (2017)

    Article  MathSciNet  Google Scholar 

  47. Li, C., Zeng, F.: The finite difference methods for fractional ordinary differential equations. Num. Funct. Anal. Opt. 34(2), 149–179 (2013)

    Article  MathSciNet  Google Scholar 

  48. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  Google Scholar 

  49. Fei-Fei, J.: An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54(7), 811–829 (1996)

    Google Scholar 

  50. Mo, J.Q., Lin, W.T., Zhu, J.: The variational iteration solving method for El Nino/La nino-southern oscillation model. Adv. Math. 35(2), 232–236 (2006)

    MathSciNet  Google Scholar 

  51. Mo, J.Q., Lin, W.T.: Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climate. J. Syst. Sci. Complex. 24(2), 271–276 (2011)

    Article  MathSciNet  Google Scholar 

  52. Singh, J., Kumar, D., Nieto, J.J.: Analysis of an El Nino-Southern Oscillation model with a new fractional derivative. Chaos Soliton. Fract. 99, 109–115 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleanu, D., Jajarmi, A. & Hajipour, M. On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dyn 94, 397–414 (2018). https://doi.org/10.1007/s11071-018-4367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4367-y

Keywords

Navigation