Skip to main content
Log in

A new transfer matrix for investigation of surface plasmon modes in multilayer structures containing anisotropic graphene layers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we derive a new transfer matrix for optical calculations of anisotropic graphene layers in the presence of an external magnetic field. We employ this method to calculate the reflectance of a configuration which can be used for the optical excitation of surface plasmon modes in a magnetostatically biased single graphene layer surrounded by two dielectric media under illumination of a transverse magnetic (TM) polarized wave. Due to the external magnetic field, both transverse electric (TE) and magnetic polarizations exist in the reflected wave. There is a dip in the reflectance spectrum of the reflected TM polarized wave which corresponds to the excitation of graphene plasmons in the terahertz region. The frequency at which reflectance becomes minimum increases with increasing the external magnetic field. However, the reflectance of reflected TE polarized wave becomes maximum when graphene plasmons are excited. We use the proposed transfer matrix method to obtain the dispersion relation of hybrid TE-TM polarized surface waves supported by the air-graphene-SiO2 structure at different external magnetic fields. Our results exactly coincide with the previous plasmon dispersion relation. Next, we consider a configuration for the excitation of surface plasmons in a multilayered structure containing three magnetostatically graphene layers. The reflectance spectrum of TM reflected waves for this structure is calculated at different external magnetic fields and for each value of magnetic field three dips appear in the reflectance which shift to higher frequencies with increase of the magnetic field. Finally, the plasmon dispersion curve corresponding to three graphene layers separated with different dielectric layers is calculated at different magnetic fields. For each value of magnetic field, there are three branches in the dispersion curve corresponding to three plasmon modes. At the same frequency, the wave number of each plasmon mode decreases with increasing the magnetic field leading to its easier optical excitation from air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photon. 4, 83 (2010)

    Article  ADS  Google Scholar 

  2. J. Homola, S.S. Yee, G. Gauglitz, Sensors Actuators B 54, 3 (1999)

    Article  Google Scholar 

  3. I. De Leon, P. Berini, Nat. Photon. 4, 382 (2010)

    Article  ADS  Google Scholar 

  4. G. Wang, H. Lu, X. Liu, Appl. Phys. Lett. 101, 013111 (2012)

    Article  ADS  Google Scholar 

  5. Y. Gong, L. Wang, X. Hu, X. Li, X. Liu, Opt. Express 17, 13727 (2009)

    Article  ADS  Google Scholar 

  6. H.J. Li, L.L. Wang, H. Zhang, Z.R. Huang, B. Sun, X. Zhai, S.C. Wen, Appl. Phys. Express 7, 024301 (2014)

    Article  ADS  Google Scholar 

  7. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, H. Yao, Opt. Express 13, 10795 (2005)

    Article  ADS  Google Scholar 

  8. Y. Gong, X. Liu, L. Wang, Y. Zhang, Opt. Commun. 284, 795 (2011)

    Article  ADS  Google Scholar 

  9. T. Holmgaard, S.I. Bozhevolnyi, Phys. Rev. B 75, 245405 (2007)

    Article  ADS  Google Scholar 

  10. Q. Bao, K.P. Loh, ACS Nano 6, 3677 (2012)

    Article  Google Scholar 

  11. Y.V. Bludov, M.I. Vasilevskiy, N.M.R. Peres, EPL 92, 68001 (2011)

    Article  ADS  Google Scholar 

  12. F.H. Koppens, D.E. Chang, F.J. Garcia de Abajo, Nano Lett. 11, 3370 (2011)

    Article  ADS  Google Scholar 

  13. A.Y. Nikitin, F. Guinea, F.J. Garcia-Vidal, L. Martin-Moreno, Phys. Rev. B 84, 195446 (2011)

    Article  ADS  Google Scholar 

  14. B.E. Sernelius, Phys. Rev. B 85, 195427 (2012)

    Article  ADS  Google Scholar 

  15. Z. Fei, A.S. Rodin, G.O. Andreev, W. Bao, A.S. McLeod, M. Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M.M. Fogler, Nature 487, 82 (2012)

    ADS  Google Scholar 

  16. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, Nature 487, 77 (2012)

    ADS  Google Scholar 

  17. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  18. A.N. Grigorenko, M. Polini, K.S. Novoselov, Nat. Photon. 6, 749 (2012)

    Article  ADS  Google Scholar 

  19. T. Low, P. Avouris, ACS Nano 8, 1086 (2014)

    Article  Google Scholar 

  20. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  21. M. Jablan, H. Buljan, M. Soljačić, Phys. Rev. B 80, 245435 (2009)

    Article  ADS  Google Scholar 

  22. A. Vakil, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  23. F.J. García de Abajo, ACS Photon. 1, 135 (2014)

    Article  Google Scholar 

  24. J.S. Gómez-Díaz, J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013)

    Article  ADS  Google Scholar 

  25. B. Sensale-Rodriguez, S. Rafique, R. Yan, M. Zhu, V. Protasenko, D. Jena, L. Liu, H.G. Xing, Opt. Express 21, 2324 (2013)

    Article  ADS  Google Scholar 

  26. S.J. Koester, M. Li, Appl. Phys. Lett. 100, 171107 (2012)

    Article  ADS  Google Scholar 

  27. H. Zhuang, F. Kong, K. Li, S. Sheng, Appl. Opt. 54, 2558 (2015)

    Article  ADS  Google Scholar 

  28. P. Chen, C. Argyropoulos, A. Alù, IEEE Trans. Antennas Propag. 61, 1528 (2013)

    Article  ADS  Google Scholar 

  29. P. Liu, W. Cai, L. Wang, X. Zhang, J. Xu, Appl. Phys. Lett. 100, 153111 (2012)

    Article  ADS  Google Scholar 

  30. I. Crassee, J. Levallois, A.L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. Marel, A.B. Kuzmenko, Nat. Phys. 7, 48 (2011)

    Article  Google Scholar 

  31. T. Yoshino, J. Opt. Soc. Am. B 30, 1085 (2013)

    Article  ADS  Google Scholar 

  32. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  33. D.L. Sounas, C. Caloz, IEEE Trans. Microwave Theory Tech. 60, 901 (2012)

    Article  ADS  Google Scholar 

  34. X. Luo, T. Qiu, W. Lu, Z. Ni, Mater. Sci. Eng. R 74, 351 (2013)

    Article  Google Scholar 

  35. Y.V. Bludov, A. Ferreira, N.M.R. Peres, M.I. Vasilevskiy, Int. J. Mod. Phys. B 27, 1341001 (2013)

    Article  ADS  Google Scholar 

  36. A. Ferreira, N.M.R. Peres, A.C. Neto, Phys. Rev. B 85, 205426 (2012)

    Article  ADS  Google Scholar 

  37. I.V. Iorsh, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, JETP Lett. 97, 249 (2013)

    Article  ADS  Google Scholar 

  38. D.A. Kuzmin, I.V. Bychkov, V.G. Shavrov, Photon. Nanostruct. 12, 473 (2014)

    Article  ADS  Google Scholar 

  39. L.G. Melo, J. Opt. Soc. Am. B 32, 2467 (2015)

    Article  ADS  Google Scholar 

  40. D. Haixia, C.W. Qiu, Appl. Phys. Lett. 100, 241106 (2012)

    Article  ADS  Google Scholar 

  41. A. Ghasempour Ardakani, Appl. Opt. 53.36, 8374 (2014)

    Article  Google Scholar 

  42. A. Ghasempour Ardakani, F. Bahmani Firoozi, J. Appl. Phys. 121, 023105 (2017)

    Article  Google Scholar 

  43. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, Ph. Lambin, T. Kaplas, Yu. Svirko, Sci. Rep. 4, 7191 (2014)

    Article  ADS  Google Scholar 

  44. I.S. Nefedov, C.A. Valagiannopoulos, L.A. Melnikov, J. Opt. 15, 114003 (2013)

    Article  ADS  Google Scholar 

  45. P.K. Maharana, R. Jha, S. Palei, Sensors Actuators B 190, 494 (2014)

    Article  Google Scholar 

  46. K. Patel, P.K. Tyagi, Carbon 116, 744 (2017)

    Article  Google Scholar 

  47. G. Jo, M. Choe, C.Y. Cho, J.H. Kim, W. Park, S. Lee, W.K. Hong, T.W. Kim, S.J. Park, B.H. Hong, Y.H. Kahng, Nanotechnology 21, 175201 (2010)

    Article  ADS  Google Scholar 

  48. Y.Q. An, F. Nelson, J.U. Lee, A.C. Diebold, Nano Lett. 13, 2104 (2013)

    Article  ADS  Google Scholar 

  49. I.V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Phys. Rev. B 87, 075416 (2013)

    Article  ADS  Google Scholar 

  50. W. Zhu, F. Xiao, M. Kang, D. Sikdar, M. Premaratne, Appl. Phys. Lett. 104, 051902 (2014)

    Article  ADS  Google Scholar 

  51. I. Khromova, A. Andryieuski, A. Lavrinenko, Laser Photon. Rev. 8, 916 (2014)

    Article  Google Scholar 

  52. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys.: Condens. Matter 25, 215301 (2013)

    ADS  Google Scholar 

  53. D.W. Berreman, J. Opt. Soc. Am. 62, 502 (1972)

    Article  ADS  Google Scholar 

  54. S.A. Mikhailov, K. Ziegler, Phys. Rev. Lett. 99, 016803 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghasempour Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardakani, A.G., Ghasemi, Z. & Golshan, M.M. A new transfer matrix for investigation of surface plasmon modes in multilayer structures containing anisotropic graphene layers. Eur. Phys. J. Plus 132, 206 (2017). https://doi.org/10.1140/epjp/i2017-11468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11468-x

Navigation