Skip to main content
Log in

Entropy generation analysis for film boiling: A simple model of quenching

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

In this paper, quenching in high-temperature materials processing is modeled as a superheated isothermal flat plate. In these phenomena, a liquid flows over the highly superheated surfaces for cooling. So the surface and the liquid are separated by the vapor layer that is formed because of the liquid which is in contact with the superheated surface. This is named forced film boiling. As an objective, the distribution of the entropy generation in the laminar forced film boiling is obtained by similarity solution for the first time in the quenching processes. The PDE governing differential equations of the laminar film boiling including continuity, momentum, and energy are reduced to ODE ones, and a dimensionless equation for entropy generation inside the liquid boundary and vapor layer is obtained. Then the ODEs are solved by applying the 4th-order Runge-Kutta method with a shooting procedure. Moreover, the Bejan number is used as a design criterion parameter for a qualitative study about the rate of cooling and the effects of plate speed are studied in the quenching processes. It is observed that for high speed of the plate the rate of cooling (heat transfer) is more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fracasso, Master Thesis, University of Padova, Padova, Italy (2010)

  2. R.D. Cess, E.M. Sparrow, ASME J. Heat Transf. 83, 370 (1961)

    Article  Google Scholar 

  3. R.D. Cess, E.M. Sparrow, ASME J. Heat Transf. 83, 377 (1961)

    Article  Google Scholar 

  4. D.A. Zumbrunnen, R. Viskanta, F.P. Incropera, ASME J. Heat Transf. 111, 760 (1989)

    Article  Google Scholar 

  5. J. Filipovic, R. Viskanta, F.P. Incropera, Int. J. Heat Mass Transf. 36, 2957 (1993)

    Article  Google Scholar 

  6. P.R. Chappidi, F.S. Gunnerson, K.O. Pasamehmetoglu, Int. Commun. Heat Mass Transf. 17, 259 (1990)

    Article  Google Scholar 

  7. H.I. Jouhara, B.P. Axcell, Trans. IChemE 80, Part A (2002)

    Article  Google Scholar 

  8. B.M. Ningegowda, B. Premachandran, Procedia IUTAM 15, 256 (2015)

    Article  Google Scholar 

  9. A. Bejan, J. Heat Transf. 101, 718 (1979)

    Article  Google Scholar 

  10. A. Bejan, Int. J. Heat Fluid Flow 8, 258 (1987)

    Article  Google Scholar 

  11. A. Bejan, Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes (CRC Press, 1995)

  12. A.S. Butt, A. Ali, Eur. Phys. J. Plus 128, 51 (2013)

    Article  Google Scholar 

  13. M. Mehrali, E. Sadeghinezhad, M.A. Rosen, A.R. Akhiani, S.T. Latibari, M. Mehrali, H.S.C. Metselaar, Int. Commun. Heat Mass Transf. 66, 23 (2015)

    Article  Google Scholar 

  14. M. Torabi, K. Zhang, Energy Convers. Manag. 89, 712 (2015)

    Article  Google Scholar 

  15. E. Lakzian, A. Masjedi, Int. J. Exergy 14, 22 (2014)

    Article  Google Scholar 

  16. B. Weigand, A. Birkefeld, Int. J. Thermal Sci. 48, 1863 (2009)

    Article  Google Scholar 

  17. A. Malvandi, D.D. Ganji, F. Hedayati, H.M. Kaffash, M. Jamshidi, Thermal Sci. 16, 1289 (2012)

    Article  Google Scholar 

  18. A. Malvandi, F. Hedayati, D.D. Ganji, Alexandria Eng. J. 52, 277 (2013)

    Article  Google Scholar 

  19. F. Hedayati, A. Malvandi, D.D. Ganji, Alexandria Eng. J. 53, 1 (2014)

    Article  Google Scholar 

  20. A.S. Butt, A. Ali, Eur. Phys. J. Plus 129, 13 (2014)

    Article  Google Scholar 

  21. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, J. Mech. Sci. Technol. 26, 2977 (2012)

    Article  Google Scholar 

  22. A. Noghrehabadi, M.R. Saffarian, R. Pourrajab, M. Ghalambaz, J. Mech. Sci. Technol. 27, 927 (2013)

    Article  Google Scholar 

  23. M. Dehsara, N. Dalir, M.R.H. Nobari, J. Mech. Sci. Technol. 28, 1819 (2014)

    Article  Google Scholar 

  24. A. Malvandi, D.D. Ganji, F. Hedayati, E.Y. Rad, Alexandria Eng. J. 52, 595 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Lotfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, A., Lakzian, E. Entropy generation analysis for film boiling: A simple model of quenching. Eur. Phys. J. Plus 131, 123 (2016). https://doi.org/10.1140/epjp/i2016-16123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16123-6

Keywords

Navigation