Skip to main content
Log in

A review on correlations of bubble growth mechanisms and bubble dynamics parameters in nucleate boiling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The benefits of nucleate pool boiling phenomena and their potential applications on thermal management of various microelectronic devices have triggered the development of new approaches that augment the magnitude of heat transfer rate. To implement these approaches, an accurate estimation of the boiling heat transfer coefficient between the fluid and the heated surface is often required. The acquisition of the boiling heat transfer coefficient must follow a better understanding of the bubble ebullition cycle because of its inherent coupling with heat transfer mechanisms involved in this cycle. Bubble ebullition occurs by periodic bubble nucleation on a boiling surface, bubble growth, and subsequent bubble departure from the surface. Different parameters related to the dynamics of the bubble ebullition cycle, including bubble departure diameter, bubble waiting period, active nucleation site density, bubble growth period, bubble departure frequency, and bubble growth rate govern the heat transfer rate in the nucleate pool boiling. Thus, numerous empirical correlations that determine the boiling heat transfer coefficient have been proposed by many researchers according to different bubble dynamics parameters. To accurately predict the boiling heat transfer coefficient and boiling heat flux based on the bubble ebullition cycle, understanding bubble growth mechanisms and associated dominant parameters is crucial. In this review, different bubble growth mechanisms during nucleate pool boiling are thoroughly reviewed. Then, bubble dynamics parameters used in different correlations for determining the boiling heat transfer coefficient are discussed. Semi-empirical and empirical correlations for determining these parameters are also extensively provided. Additionally, a detailed review of factors affecting bubble dynamics parameters is provided. Next, different applications of nucleate boiling in cooling systems are reviewed. Overall, this review includes various correlations from experimental and numerical data, which can be used to better predict the heat transfer during nucleate boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Abbreviations

A :

Area of heated surface (m2)

C p :

Specific heat (kJ kg1 °C1)

C D :

Drag coefficient

D d :

Bubble departure diameter (m)

D :

Bubble diameter (m)

D c :

Cavity diameter (μm)

dD/dt :

Bubble growth rate

f :

Bubble departure frequency (1 s− 1)

g :

Gravitational acceleration (m s2)

h :

Heat transfer coefficient (W m−2K−1)

h lv :

Latent heat of vaporization (J kg− 1)

Ja :

Jakob number (\(\rho_{\text{l}} C_{\text{pl}} (T_{\text{w}} - T_{\text{sat}} )/\rho_{\text{v}} h_{\text{lv}}\))

k :

Thermal conductivity (W/m− 1K− 1)

Nu :

Nusselt number (hD k− 1)

N :

Number of nucleation sites

n s :

Active nucleation site density (sites m− 2)

\(\overline{n}_{a}\) :

Average cavity density (sites m2)

P :

Pressure (MPa)

Pr :

Prandtl number (\(\mu_{l} C_{pl} /k_{l}\))

R a :

Surface roughness (μm)

R c :

Cavity radius (μm)

\(R_{c}^{ + }\) :

Non-dimensional critical cavity radius

r :

Bubble radius (m)

r b :

Radius of the liquid microlayer under bubble (m)

\(r^{ + }\) :

Non-dimensional bubble radius

T :

Temperature (K)

t :

Time (s)

t w :

Bubble waiting period (s)

t g :

Bubble growth period (s)

\(t^{ + }\) :

Non-dimensional time

V :

Volume (m3)

V d :

Bubble departure volume

\(\theta\) :

Contact angle (°)

\(\rho\) :

Density (kg m3)

\(\Delta\) :

Difference

\(\phi\) :

Dimensionless surface roughness parameter

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\beta\) :

Half cone angle (°)

\(\overline{\beta }\) :

Mean half cone angle (°)

\(\nu\) :

Kinematic viscosity (m2 s− 1)

\(\sigma\) :

Surface tension (N m− 1)

\(\delta\) :

Thermal boundary layer thickness (m)

\(\alpha\) :

Thermal diffusivity (\(k_{\text l} /\rho {}_{\text l}C_{\text {pl}}\))(m2 s− 1)

\(\varepsilon\) :

Volumetric expansion coefficient (K− 1)

 + :

Non-dimensional

C :

Cavity

L :

Liquid phase

Max :

Maximum

Min :

Minimum

Nc :

Natural convection

B :

Boiling

Sat :

Saturation condition

Tc :

Transient conduction

S :

Heating surface

\(\nu\) :

Vapor phase

References

  1. Mosavati B, Mosavati M, Kowsary F. Inverse boundary design solution in a combined radiating-free convecting furnace filled with participating medium containing specularly reflecting walls. Int Commun Heat Mass Transf. 2016;76:69–76. https://doi.org/10.1016/j.icheatmasstransfer.2016.04.029.

    Article  Google Scholar 

  2. Mosavati B, Mosavati M, Kowsary F. Solution of radiative inverse boundary design problem in a combined radiating-free convecting furnace. Int Commun Heat Mass Transf. 2013;45:130–6. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.011.

    Article  Google Scholar 

  3. Mosavati M, Kowsary F, Mosavati B. A novel, noniterative inverse boundary design regularized solution technique using the backward Monte Carlo Method. J Heat Transfer. 2013. https://doi.org/10.1115/1.4022994.

    Article  Google Scholar 

  4. Beigzadeh M, Pourfayaz F, Ghazvini M, Ahmadi MH. Energy and exergy analyses of solid oxide fuel cell-gas turbine hybrid systems fed by different renewable biofuels: A comparative study. J Clean Prod. 2021;280:124383. https://doi.org/10.1016/j.jclepro.2020.124383.

    Article  CAS  Google Scholar 

  5. Fan S, Duan F. A review of two-phase submerged boiling in thermal management of electronic cooling. Int J Heat Mass Transf. 2020;150:119324. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119324.

    Article  CAS  Google Scholar 

  6. Hetsroni G, Mosyak A, Segal Z, Ziskind G. A uniform temperature heat sink for cooling of electronic devices. Int J Heat Mass Transf. 2002;45:3275–86. https://doi.org/10.1016/S0017-9310(02)00048-0.

    Article  CAS  Google Scholar 

  7. Selvam RP, Lin L, Ponnappan R. Direct simulation of spray cooling: Effect of vapor bubble growth and liquid droplet impact on heat transfer. Int J Heat Mass Transf. 2006;49:4265–78. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.009.

    Article  Google Scholar 

  8. Cho HJ, Wang EN. Bubble nucleation, growth, and departure: A new, dynamic understanding. Int J Heat Mass Transf. 2019;145:118803. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118803.

    Article  Google Scholar 

  9. Mikic BB, Rohsenow WM, Griffith P. On bubble growth rates. Int J Heat Mass Transf. 1970;13:657–66. https://doi.org/10.1016/0017-9310(70)90040-2.

    Article  Google Scholar 

  10. Cole R. Bubble frequencies and departure volumes at subatmospheric pressures. AIChE J. 1967;13:779–83. https://doi.org/10.1002/aic.690130434.

    Article  CAS  Google Scholar 

  11. van Stralen SJD, Sohal MS, Cole R, Sluyter WM. Bubble growth rates in pure and binary systems: Combined effect of relaxation and evaporation microlayers. Int J Heat Mass Transf. 1975;18:453–67. https://doi.org/10.1016/0017-9310(75)90033-2.

    Article  Google Scholar 

  12. Nam Y, Aktinol E, Dhir VK, Ju YS. Single bubble dynamics on a superhydrophilic surface with artificial nucleation sites. Int J Heat Mass Transf. 2011;54:1572–7. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.031.

    Article  CAS  Google Scholar 

  13. Son G, Dhir VK, Ramanujapu N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J Heat Transfer. 1999;121:623–31. https://doi.org/10.1115/1.2826025.

    Article  CAS  Google Scholar 

  14. Mukherjee A, Kandlikar SG. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. Int J Heat Mass Transf. 2007;50:127–38. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.037.

    Article  Google Scholar 

  15. Kim J. Review of nucleate pool boiling bubble heat transfer mechanisms. Int J Multiph Flow. 2009;35:1067–76. https://doi.org/10.1016/j.ijmultiphaseflow.2009.07.008.

    Article  CAS  Google Scholar 

  16. Liang G, Mudawar I. Review of spray cooling – Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transf. 2017;115:1174–205. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.029.

    Article  CAS  Google Scholar 

  17. Liang G, Mudawar I. Review of spray cooling – part 2: High temperature boiling regimes and quenching applications. Int J Heat Mass Transf. 2017;115:1206–22. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.022.

    Article  CAS  Google Scholar 

  18. Sadeghi R, Shadloo MS. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2017;71:560–74. https://doi.org/10.1080/10407782.2016.1277936.

    Article  CAS  Google Scholar 

  19. Goodarzi M, Tlili I, Moria H, Cardoso EM, Alkanhal TA, Anqi AE, et al. Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk. Powder Technol. 2021;377:10–9. https://doi.org/10.1016/j.powtec.2020.08.083.

    Article  CAS  Google Scholar 

  20. Li Z, Sarafraz MM, Mazinani A, Hayat T, Alsulami H, Goodarzi M. Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces. Int J Heat Mass Transf. 2020;156:119780. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119780.

    Article  CAS  Google Scholar 

  21. Sarafraz MM, Tlili I, Tian Z, Khan AR, Safaei MR. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim. 2020;139:2413–22. https://doi.org/10.1007/s10973-019-08435-x.

    Article  CAS  Google Scholar 

  22. Rashidi S, Hormozi F, Sarafraz MM. Potentials of boiling heat transfer in advanced thermal energy systems. J Therm Anal Calorim. 2020;143:1833–54. https://doi.org/10.1007/s10973-020-09511-3.

    Article  CAS  Google Scholar 

  23. Rashidi S, Hormozi F, Sarafraz MM. Fundamental and subphenomena of boiling heat transfer. J Therm Anal Calorim. 2020;143:1815–32. https://doi.org/10.1007/s10973-020-09468-3.

    Article  CAS  Google Scholar 

  24. Kamel MS, Al-agha MS, Lezsovits F, Mahian O. Simulation of pool boiling of nanofluids by using Eulerian multiphase model. J Therm Anal Calorim. 2020;142:493–505. https://doi.org/10.1007/s10973-019-09180-x.

    Article  CAS  Google Scholar 

  25. Liang G, Mudawar I. Pool boiling critical heat flux (CHF) – Part 1: Review of mechanisms, models, and correlations. Int J Heat Mass Transf. 2018;117:1352–67. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.134.

    Article  CAS  Google Scholar 

  26. Bankoff SG. Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 1958;4:24–6. https://doi.org/10.1002/aic.690040105.

    Article  CAS  Google Scholar 

  27. Griffith P, Wallis JD. THE ROLE OF SURFACE CONDITIONS IN NUCLEATE BOILING. Cambridge, Mass.: Massachusetts Institute of Technology, 1958.

  28. Lorenz JJ, Mikic BB, Rohsenow Warren M. The effects of surface conditions on boiling characteristics. Cambridge, Mass.: M.I.T. Engineering Projects Laboratory, 1972.

  29. Hsu YY. On the size range of active nucleation cavities on a heating surface. J Heat Transfer. 1962;84:207–13. https://doi.org/10.1115/1.3684339.

    Article  CAS  Google Scholar 

  30. Alavi Fazel SA, Shafaee SB. Bubble dynamics for nucleate pool boiling of electrolyte solutions. J Heat Transfer. 2010;132:1–7. https://doi.org/10.1115/1.4001315.

    Article  CAS  Google Scholar 

  31. Zeng LZ, Klausner JF, Mei R. A unified model for the prediction of bubble detachment diameters in boiling systems- I. Pool boiling. Int J Heat Mass Transf. 1993;36:2261–70. https://doi.org/10.1016/S0017-9310(05)80111-5.

    Article  CAS  Google Scholar 

  32. Kocamustafaogullari G. Pressure dependence of bubble departure diameter for water. Int Commun Heat Mass Transf. 1983;10:501–9. https://doi.org/10.1016/0735-1933(83)90057-X.

    Article  CAS  Google Scholar 

  33. Mohanty RL, Das MK. A critical review on bubble dynamics parameters influencing boiling heat transfer. Renew Sustain Energy Rev. 2017;78:466–94. https://doi.org/10.1016/j.rser.2017.04.092.

    Article  CAS  Google Scholar 

  34. Faghri A, Zhang Y. Boiling chapter-Transport Phenomenon in Multiphase Systems. Transp Phenom Multiph Syst, Elsevier 2006. pp. 765–852.

  35. Plesset MS, Zwick SA. The growth of vapor bubbles in superheated liquids. J Appl Phys. 1954;25:493–500. https://doi.org/10.1063/1.1721668.

    Article  CAS  Google Scholar 

  36. Miyatake O, Tanaka I, Lior N. A simple universal equation for bubble growth in pure liquids and binary solutions with a non-volatile solute. Int J Heat Mass Transf. 1997;40:1577–84. https://doi.org/10.1016/S0017-9310(96)00224-4.

    Article  CAS  Google Scholar 

  37. Theofanous TG, Patel PD. Universal relations for bubble growth. Int J Heat Mass Transf. 1976;19:425–9. https://doi.org/10.1016/0017-9310(76)90098-3.

    Article  Google Scholar 

  38. Forster HK, Zuber N. Growth of a vapor bubble in a superheated liquid. J Appl Phys. 1954;25:474–8. https://doi.org/10.1063/1.1721664.

    Article  CAS  Google Scholar 

  39. Zuber N. The dynamics of vapor bubbles in nonuniform temperature fields. Int J Heat Mass Transf. 1961;2:83–98. https://doi.org/10.1016/0017-9310(61)90016-3.

    Article  Google Scholar 

  40. Carey VP. Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Second Edition. Taylor and Francis; 2008.

  41. Guichet V, Almahmoud S, Jouhara H. Nucleate pool boiling heat transfer in wickless heat pipes (two-phase closed thermosyphons): A critical review of correlations. Therm Sci Eng Prog. 2019;13:100384. https://doi.org/10.1016/j.tsep.2019.100384.

    Article  Google Scholar 

  42. Cole R, Shulman HL. Bubble growth rates at high Jakob numbers. Int J Heat Mass Transf. 1966;9:1377–90. https://doi.org/10.1016/0017-9310(66)90135-9.

    Article  CAS  Google Scholar 

  43. Chi-Yeh H, Griffith P. The mechanism of heat transfer in nucleate pool boiling-Part I. Bubble initiaton, growth and departure. Int J Heat Mass Transf. 1965;8:887–904. https://doi.org/10.1016/0017-9310(65)90073-6.

    Article  Google Scholar 

  44. Howell JR, Siegel R. Incipience, growth, and detachment of boiling bubbles in saturated water from artificial nucleation sites of known geometry and size. Int Heat Transf Conf. 2019;3:12–23. https://doi.org/10.1615/ihtc3.1120.

    Article  Google Scholar 

  45. Eastman RE. Dynamics of bubble departure. AIAA Pap., AIAA19th Thermophysics Conference; 1984. https://doi.org/10.2514/6.1984-1707.

  46. W. Fritz, “Maximum volume of vapor bubbles,” Physikalische Zeitschrift, vol. 36, pp. 379–384, 1935. - Open Access Library n.d. http://www.oalib.com/references/14278337 (accessed January 9, 2020).

  47. Staniszewski B. Nucleate boiling bubble growth and departure, Cambridge, Mass.: Massachusetts Institute of Technology. 1959.

  48. Ardron KH, Giustini G, Walker SP. Prediction of dynamic contact angles and bubble departure diameters in pool boiling using equilibrium thermodynamics. Int J Heat Mass Transf. 2017;114:1274–94. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.013.

    Article  Google Scholar 

  49. Cho YJ, Yum SB, Lee JH, Park GC. Development of bubble departure and lift-off diameter models in low heat flux and low flow velocity conditions. Int J Heat Mass Transf. 2011;54:3234–44. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.007.

    Article  Google Scholar 

  50. Basu N, Warrier GR, Dhir VK. Wall heat flux partitioning during subcooled flow boiling: Part 1 - Model development. J Heat Transfer. 2005;127:131–40. https://doi.org/10.1115/1.1842784.

    Article  CAS  Google Scholar 

  51. Kocamustafaogullari G, Ishii M. Aire interfaciale et densite de sites de nucleation dans les systemes en ebullition. Int J Heat Mass Transf. 1983;26:1377–87. https://doi.org/10.1016/S0017-9310(83)80069-6.

    Article  Google Scholar 

  52. Hazi G, Markus A. On the bubble departure diameter and release frequency based on numerical simulation results. Int J Heat Mass Transf. 2009;52:1472–80. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.003.

    Article  CAS  Google Scholar 

  53. Suszko A, El-Genk MS. Saturation boiling of PF-5060 on rough Cu surfaces: Bubbles transient growth, departure diameter and detachment frequency. Int J Heat Mass Transf. 2015;91:363–73. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.083.

    Article  CAS  Google Scholar 

  54. Borinshansky V, Fokin FS. Heat transfer and hydrodynamics in steam generators, Trudy TsKTI, 1963.

  55. Ruckenstein R. Recent trends in boiling heat and mass transfer. Appl Mech Rev 1964;17:663–72.

  56. Hatton P, Hall IS. Photographic study of boiling on prepared surfaces. In: Proceedings of the 3rd international heat transfer conference, AIChE, vol. 4, no. 2, 1966, p. 24–37.

  57. Cole RRW. Correlation of bubble departure diameters for boiling of saturated liquids. Chem Eng Prog Symp Ser. 1969;65:211–3.

    CAS  Google Scholar 

  58. Van Stralen SJD, Zijl W. Fundamental developments in bubble dynamics. In: Proceedings of the 6th international heat transfer conference, vol. 6, 1978, p. 429–50.

  59. Golorin VS, Kolchugin BA, Zakharova EA. Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high speed motionpicture photography. Heat Transf Sov Res 1978;10:79–98.

  60. Kutateladze SS, Gogonin II. Growth rate and detachment diameter of a vapor bubble in free convection boiling of a saturated liquids. High Temp 1979;17:667–71.

  61. Gorenflo D, Knabe V, Bieling V. Bubble density on surfaces with nucleate boiling-Its influences on heat transfer. In: Proceedings of the 8th international heat transfer conference, vol. 4, 1986, p. 1995–2000.

  62. Wenzel U, Ulrich. Saturated pool boiling and subcooled flow boiling of mixtures at atmospheric pressure, Thesis (PhD–Chemical and Materials Engineering)–University of Auckland, 1992.

  63. Zeng LZ, Klausner JF, Bernhard DM, Mei R. A unified model for the prediction of bubble detachment diameters in boiling systems-II. Flow boiling. Int J Heat Mass Transf. 1993;36:2271–9. https://doi.org/10.1016/S0017-9310(05)80112-7.

    Article  CAS  Google Scholar 

  64. Yang C, Wu Y, Yuan X, Ma C. Study on bubble dynamics for pool nucleate boiling. Int J Heat Mass Transf. 2000;43:203–8. https://doi.org/10.1016/s0017-9310(99)00132-5.

    Article  CAS  Google Scholar 

  65. Lee HC, Do OB, Bae SW, Kim MH. Single bubble growth in saturated pool boiling on a constant wall temperature surface. Int J Multiph Flow. 2003;29:1857–74. https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.003.

    Article  CAS  Google Scholar 

  66. Jamialahmadi M, Helalizadeh A, Müller-Steinhagen H. Pool boiling heat transfer to electrolyte solutions. Int J Heat Mass Transf. 2004;47:729–42. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.025.

    Article  CAS  Google Scholar 

  67. Kim J, Kim MH. On the departure behaviors of bubble at nucleate pool boiling. Int J Multiph Flow. 2006;32:1269–86. https://doi.org/10.1016/j.ijmultiphaseflow.2006.06.010.

    Article  CAS  Google Scholar 

  68. Fazel SAA, Shafaee SB. Bubble dynamics for nucleate poll boiling of electrolyte solutions. ASME J Heat Transf. 2010;132(2):815021–7.

  69. Phan HT, Caney N, Marty P, Colasson S, Gavillet J. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling. Int Commun Heat Mass Transf. 2010;37:964–9. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.024.

    Article  Google Scholar 

  70. Lamas MI, Jabardo JMS, Arce A, Farinas P. Numerical analysis of the bubble detachment diameter in nucleate boiling. In: Proceedings of the 6th European Therm Sci Conf, J Phy: Conf Series 395, 2012.

  71. Hamzekhani S, Maniavi Falahieh M, Akbari A. Bubble departure diameter in nucleate pool boiling at saturation: Pure liquids and binary mixtures. Int J Refrig. 2014;46:50–8. https://doi.org/10.1016/j.ijrefrig.2014.07.003.

    Article  CAS  Google Scholar 

  72. Bovard S, Asadinia H, Hosseini G, Alavi Fazel SA. Investigation and experimental analysis of the bubble departure diameter in pure liquids on horizontal cylindrical heater. Heat Mass Transf Und Stoffuebertragung. 2017;53:1199–210. https://doi.org/10.1007/s00231-016-1885-3.

    Article  CAS  Google Scholar 

  73. Ünal HC. Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2. Int J Heat Mass Transf. 1976;19:643–9. https://doi.org/10.1016/0017-9310(76)90047-8.

    Article  Google Scholar 

  74. Bae BU, Yun BJ, Euh DJ, Song CH, Yoon HY. Development of CFD Code for Subcooled Boiling Two-Phase Flow with Modeling of the Interfacial Area Transport Equation (KAERI/TR–3679/2008). Republic of Korea. 2008.

  75. Gupta MK, Sharma DS, Lakhera VJ. Vapor bubble formation, forces, and induced vibration: A review. Appl Mech Rev. 2016. https://doi.org/10.1115/1.4033622.

    Article  Google Scholar 

  76. Gaertner RF, Westwater JW. Population of active sites in nucleate boiling heat transfer.Chem Eng Prog Symp Ser 1960;56:39–48.

  77. Mikic BB, Rohsenow WM. A new correlation of pool-boiling data including the effect of heating surface characteristics. J Heat Transfer. 1969;91:245–50. https://doi.org/10.1115/1.3580136.

    Article  CAS  Google Scholar 

  78. Zou L, Jones BG. Thermal interaction effect on nucleation site distribution in subcooled boiling. Int J Heat Mass Transf. 2012;55:2822–8. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.044.

    Article  CAS  Google Scholar 

  79. Hibiki T, Ishii M. Active nucleation site density in boiling systems. Int J Heat Mass Transf. 2003;46:2587–601. https://doi.org/10.1016/S0017-9310(03)00031-0.

    Article  CAS  Google Scholar 

  80. Bier K, Gorenflo D, Salem M, Tanes Y. Pool boiling heat transfer and size of active nucleation centers for horizontal plates with different surface roughness. In: Proceedings of the 6th heat transfer conference. Toronto, vol. 1, 1978, p. 151–56.

  81. Cornwell K, Brown RD. Boiling surface topography. In: Proceedings of the 6th international heat transfer conference. Toronto, vol. 1, 1978, p. 157–61.

  82. Paul DD, Abdel-Khalik SI. A statistical analysis of saturated nucleate boiling along a heated wire. Int J Heat Mass Transf. 1983;26:509–19. https://doi.org/10.1016/0017-9310(83)90002-9.

    Article  Google Scholar 

  83. Yang SR, Kim RH. A mathematical model of the pool boiling nucleation site density in terms of the surface characteristics. Int J Heat Mass Transf. 1988;31:1127–35. https://doi.org/10.1016/0017-9310(88)90055-5.

    Article  CAS  Google Scholar 

  84. Wang CH, Dhir VK. Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J Heat Transfer. 1993;115:659–69. https://doi.org/10.1115/1.2910737.

    Article  CAS  Google Scholar 

  85. Benjamin RJ, Balakrishnan AR. Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp Therm Fluid Sci. 1997;15:32–42. https://doi.org/10.1016/S0894-1777(96)00168-9.

    Article  CAS  Google Scholar 

  86. Sakashita H, Kumada T. Method for predicting boiling curves of saturated nucleate boiling. Int J Heat Mass Transf. 2001;44:673–82. https://doi.org/10.1016/S0017-9310(00)00104-6.

    Article  CAS  Google Scholar 

  87. Hsu YY, Graham RW. Transport processes in boiling and two-phase systems. Chaps 5 and 6, 2. New York: Hemisphere; 1976.

  88. Labuntsov DA, Kolchugin BA, Golovin VS, Zakharova EA, Vladimirova LN. Study of the growth of bubbles during boiling of saturated water within a wide range of pressures by means of high-speed moving pictures. UCS 1964;536.423(1):404–9.

  89. Van Stralen SJD, Sluyter WM. Local temperature fluctuations in saturated pool boiling of pure liquids and binary mixtures. Int J Heat Mass Transf. 1969. https://doi.org/10.1016/0017-9310(69)90061-1.

    Article  Google Scholar 

  90. Hamzekhani S, Falahieh MM, Kamalizadeh MR, Nazari Z. Experimental study on bubble departure frequency for pool boiling of water/NaCl solutions. Heat Mass Transf Und Stoffuebertragung. 2015;51:1313–20. https://doi.org/10.1007/s00231-015-1502-x.

    Article  CAS  Google Scholar 

  91. Akiyama M, Tachibana F, Ogawa N. Effect of pressure on bubble growth in pool boiling. Bull JSME. 1969;12:1121–8. https://doi.org/10.1299/jsme1958.12.1121.

    Article  CAS  Google Scholar 

  92. Chen DQ, Pan LM, Yuan DW, Zhang H, Xu JH, Huang YP. The nature of bubble growth under different system pressures in a narrow channel. Nucl Eng Des. 2011;241:785–91. https://doi.org/10.1016/j.nucengdes.2010.12.013.

    Article  CAS  Google Scholar 

  93. Cooper MG. The microlayer and bubble growth in nucleate pool boiling. Int J Heat Mass Transf. 1969;12:915–33. https://doi.org/10.1016/0017-9310(69)90155-0.

    Article  CAS  Google Scholar 

  94. Zhao YH, Masuoka T, Tsuruta T. Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model. Int J Heat Mass Transf. 2002;45:3189–97. https://doi.org/10.1016/S0017-9310(02)00022-4.

    Article  CAS  Google Scholar 

  95. Yun BJ, Splawski A, Lo S, Song CH. Prediction of a subcooled boiling flow with advanced two-phase flow models. Nucl Eng Des. 2012;253:351–9. https://doi.org/10.1016/j.nucengdes.2011.08.067.

    Article  CAS  Google Scholar 

  96. Jakob and Linke. Heat transfer from a horizontal plate. Forsch Geb Ing. 1933;4:75–81. https://doi.org/10.1002/cjce.5450670324.

    Article  Google Scholar 

  97. Jakob MFW. Versuche uber den verdampfungsvorgang. Forsch Auf Dem Geb Des Ing. 1935;2:435–47. https://doi.org/10.1007/3-540-69835-3_16.

    Article  Google Scholar 

  98. Peebles FN, Garber HJ. Study on motion of gas bubbles in liquids. Chem Eng Prog 1953;49:88–97.

  99. McFadden PW, Grassmann P. The relation between bubble frequency and diameter during nucleate pool boiling. Int J Heat Mass Transf. 1962;5:169–73. https://doi.org/10.1016/0017-9310(62)90009-1.

    Article  CAS  Google Scholar 

  100. Zuber N. Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int J Heat Mass Transf. 1963. https://doi.org/10.1016/0017-9310(63)90029-2.

    Article  Google Scholar 

  101. Jakob M. Heat Transfer, Chapter 29, 1. New York: Wiley and Sons; 1949.

  102. Jakob L. Heat transfer from a horizontal plate. Forsch Geb Ing. 1933;4:75–81.

    Article  CAS  Google Scholar 

  103. Ivey HJ. Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling. Int J Heat Mass Transf. 1967;10:1023–40. https://doi.org/10.1016/0017-9310(67)90118-4.

    Article  CAS  Google Scholar 

  104. Malenkov IG. Detachment frequency as a function of size for vapor bubbles. J Eng Phys. 1971;20:704–8. https://doi.org/10.1007/BF01122590.

    Article  Google Scholar 

  105. Katto Y, Yokoya S. Behavior of a Vapor Mass in Saturated Nucleate and Transitional Pool Boiling. Trans Japan Soc Mech Eng. 1975;41:294–305. https://doi.org/10.1299/kikai1938.41.294.

    Article  Google Scholar 

  106. Stephan K. Heat transfer in condensation and boiling. New York: Springer; 1992.

  107. Kumada T, Sakashita H, Yamagishi H. Pool boiling heat transfer-I. Measurement and semi-empirical relations of detachment frequencies of coalesced bubbles. Int J Heat Mass Transf. 1995;38:969–77. https://doi.org/10.1016/0017-9310(94)00224-J.

    Article  CAS  Google Scholar 

  108. Sakashita H, Ono A. Boiling behaviors and critical heat flux on a horizontal plate in saturated pool boiling of water at high pressures. Int J Heat Mass Transf. 2009;52:744–50. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.040.

    Article  CAS  Google Scholar 

  109. Miglani A, Joo D, Basu S, Kumar R. Nucleation dynamics and pool boiling characteristics of high pressure refrigerant using thermochromic liquid crystals. Int J Heat Mass Transf. 2013;60:188–200. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.054.

    Article  CAS  Google Scholar 

  110. Cheng L, Mewes D, Luke A. Boiling phenomena with surfactants and polymeric additives: A state-of-the-art review. Int J Heat Mass Transf. 2007;50:2744–71. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.016.

    Article  CAS  Google Scholar 

  111. Saha SK, Ranjan H, Emani MS, Bharti AK. Two-phase heat transfer enhancement. Springer, 2020.

  112. Gao M, Cheng P, Quan X. An experimental investigation on effects of an electric field on bubble growth on a small heater in pool boiling. Int J Heat Mass Transf. 2013;67:984–91. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.098.

    Article  CAS  Google Scholar 

  113. Chen F, Peng Y, Song YZ, Chen M. EHD behavior of nitrogen bubbles in DC electric fields. Exp Therm Fluid Sci. 2007;32:174–81. https://doi.org/10.1016/j.expthermflusci.2007.03.006.

    Article  CAS  Google Scholar 

  114. Dong W, Li RY, Yu HL, Yan YY. An investigation of behaviours of a single bubble in a uniform electric field. Exp Therm Fluid Sci. 2006;30:579–86. https://doi.org/10.1016/j.expthermflusci.2005.12.003.

    Article  Google Scholar 

  115. Ogata J, Yabe A. Augmentation of boiling heat transfer by utilizing the EHD effect-EHD behaviour of boiling bubbles and heat transfer characteristics. Int J Heat Mass Transf. 1993;36:783–91. https://doi.org/10.1016/0017-9310(93)80054-X.

    Article  CAS  Google Scholar 

  116. Xu Y, Karayiannis TG. Electric field effect in boiling heat transfer. part B: electrode geometry. J Enhanc Heat Transf. 1998;5:231–47. https://doi.org/10.1615/jenhheattransf.v5.i4.20.

    Article  Google Scholar 

  117. Madadnia J, Koosha H. Electrohydrodynamic effects on characteristic of isolated bubbles in the nucleate pool boiling regime. Exp Therm Fluid Sci. 2003;27:145–50. https://doi.org/10.1016/S0894-1777(02)00258-3.

    Article  CAS  Google Scholar 

  118. Kweon YC, Kim MH. Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform de electric field. Int J Multiph Flow. 2000;26:1351–68. https://doi.org/10.1016/S0301-9322(99)00090-7.

    Article  CAS  Google Scholar 

  119. Pascual CC, Jeter SM, Abdel-Khalik SI. A statistical analysis of EHD-enhanced nucleate boiling along a heated wire. Int J Heat Mass Transf. 2001;44:1201–12. https://doi.org/10.1016/S0017-9310(00)00149-6.

    Article  CAS  Google Scholar 

  120. Siedel S, Cioulachtjian S, Robinson AJ, Bonjour J. Electric field effects during nucleate boiling from an artificial nucleation site. Exp Therm Fluid Sci. 2011;35:762–71. https://doi.org/10.1016/j.expthermflusci.2010.06.006.

    Article  CAS  Google Scholar 

  121. Chen F, Liu D, Song Y. Visualization of a single boiling bubble in a DC electric field. vol. 2, American Society of Mechanical Engineers Digital Collection; 2012, p. 245–52. https://doi.org/10.1115/FEDSM2012-72493.

  122. Rahmati P, Ebrahimi-Dehshali M, Hakkaki-Fard A. Enhancement of pool boiling heat transfer using ferromagnetic beads in a variable magnetic field. Appl Therm Eng. 2020;164:114439. https://doi.org/10.1016/j.applthermaleng.2019.114439.

    Article  Google Scholar 

  123. Junhong L, Jianming G, Zhiwei L, Hui L. Experiments and mechanism analysis of pool boiling heat transfer enhancement with water-based magnetic fluid. Heat Mass Transf Und Stoffuebertragung. 2004;41:170–5. https://doi.org/10.1007/s00231-004-0529-1.

    Article  CAS  Google Scholar 

  124. Abdollahi A, Salimpour MR, Etesami N. Experimental analysis of magnetic field effect on the pool boiling heat transfer of a ferrofluid. Appl Therm Eng. 2017;111:1101–10. https://doi.org/10.1016/j.applthermaleng.2016.10.019.

    Article  CAS  Google Scholar 

  125. Khooshechin M, Fathi S, Salimi F, Ovaysi S. The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling. Int J Heat Mass Transf. 2020;154:119783. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119783.

    Article  CAS  Google Scholar 

  126. Gong M, Wu Y, Ding L, Cheng K, Wu J. Visualization study on nucleate pool boiling of ethane, isobutane and their binary mixtures. Exp Therm Fluid Sci. 2013;51:164–73. https://doi.org/10.1016/j.expthermflusci.2013.07.011.

    Article  CAS  Google Scholar 

  127. Gao W, Qi J, Yang X, Zhang J, Wu D. Experimental investigation on bubble departure diameter in pool boiling under sub-atmospheric pressure. Int J Heat Mass Transf. 2019;134:933–47. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.024.

    Article  CAS  Google Scholar 

  128. Goodarzi M, Tlili I, Moria H, Abdullah Alkanhal T, Ellahi R, Anqi AE, et al. Boiling heat transfer characteristics of graphene oxide nanoplatelets nano-suspensions of water-perfluorohexane (C6F14) and water-n-pentane. Alexandria Eng J. 2020;59:4511–21. https://doi.org/10.1016/j.aej.2020.08.003.

    Article  Google Scholar 

  129. Li Z, Mazinani A, Hayat T, Al-Rashed AAAA, Alsulami H, Goodarzi M, et al. Transient pool boiling and particulate deposition of copper oxide nano-suspensions. Int J Heat Mass Transf. 2020;155:119743. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119743.

    Article  CAS  Google Scholar 

  130. Safaei MR, Tlili I, Gholamalizadeh E, Abbas T, Alkanhal TA, Goodarzi M, et al. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09911-5.

    Article  Google Scholar 

  131. Salehi H, Hormozi F. Prediction of Al2O3–water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137:1069–82. https://doi.org/10.1007/s10973-018-07993-w.

    Article  CAS  Google Scholar 

  132. Mukherjee S, Mishra PC, Chaudhuri P. Pool boiling performance of aqueous Al2O3 and TiO2 nanofluids on a horizontally placed flat polished surface: an experimental investigation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09995-z.

    Article  Google Scholar 

  133. Wang D, Quan X, Liu C, Cheng P. An experimental investigation on periodic single bubble growth and departure from a small heater submerged in a nanofluid containing moderately hydrophilic nanoparticles. Int Commun Heat Mass Transf. 2018;95:1–8. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.016.

    Article  CAS  Google Scholar 

  134. Cieliski JT, Krygier K. Augmentation of the critical heat flux in water-Al2O3, water-TiO2 and water-Cu nanofluids MATEC Web of Conferences Volume 18, 101 EUROTHERM Seminar – Transport Phenomena in Multiphase Systems, 2014.

  135. Truong BH. Determination of pool boiling Critical Heat Flux enhancement in nanofluids. ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 8 PART A, American Society of Mechanical Engineers Digital Collection; 2008, p. 289–99. https://doi.org/10.1115/IMECE2007-41697.

  136. Ali HM, Generous MM, Ahmad F, Irfan M. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids. Appl Therm Eng. 2017;113:1146–51. https://doi.org/10.1016/j.applthermaleng.2016.11.127.

    Article  CAS  Google Scholar 

  137. Milanova D, Kumar R. Heat transfer behavior of silica nanoparticles in pool boiling experiment. Journal of Heat Transfer, vol. 130, American Society of Mechanical Engineers Digital Collection; 2008. https://doi.org/10.1115/1.2787020.

  138. Rainho Neto A, Oliveira JLG, Passos JC. Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs. Appl Therm Eng. 2017;111:1493–506. https://doi.org/10.1016/j.applthermaleng.2016.06.130.

    Article  CAS  Google Scholar 

  139. Bang IC, Heung CS. Boiling heat transfer performance and phenomena of Al2O 3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf. 2005;48:2407–19. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047.

    Article  CAS  Google Scholar 

  140. You SM, Kim JH, Kim KH. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett. 2003;83:3374–6. https://doi.org/10.1063/1.1619206.

    Article  CAS  Google Scholar 

  141. Kim HD, Kim J, Kim MH. Experimental studies on CHF characteristics of nano-fluids at pool boiling. Int J Multiph Flow. 2007;33:691–706. https://doi.org/10.1016/j.ijmultiphaseflow.2007.02.007.

    Article  CAS  Google Scholar 

  142. Kim SJ, Bang IC, Buongiorno J, Hu LW. Study of pool boiling and critical heat flux enhancement in nanofluids. vol. 55, no. 2, 2007.

  143. Padhye R, McCollum J, Korzeniewski C, Pantoya ML. Examining Hydroxyl-Alumina Bonding toward Aluminum Nanoparticle Reactivity. J Phys Chem C. 2015;119:26547–53. https://doi.org/10.1021/acs.jpcc.5b08408.

    Article  CAS  Google Scholar 

  144. Hiswankar SC, Kshirsagar JM. Determination Of Critical Heat Flux In Pool Boiling Using ZnO Nanofluids. Int J Eng Res Tech (IJERT) 2013;2(7).

  145. Kathiravan R, Kumar R, Gupta A, Chandra R. Preparation and pool boiling characteristics of copper nanofluids over a flat plate heater. Int J Heat Mass Transf. 2010;53:1673–81. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.022.

    Article  CAS  Google Scholar 

  146. Alavi Fazel SA, Mahboobpour M. Pool boiling heat transfer in monoethyleneglycol aqueous solutions. Exp Therm Fluid Sci. 2013;48:177–83. https://doi.org/10.1016/j.expthermflusci.2013.02.021.

    Article  CAS  Google Scholar 

  147. Tong W, Wu C, Toh KC, Duan F. Experimental study of bubble dynamics in highly wetting dielectric liquid pool boiling through high-speed video. 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016, p. 359–63. https://doi.org/10.1109/ITHERM.2016.7517571.

  148. Gong S, Cheng P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int J Heat Mass Transf. 2013;64:122–32. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058.

    Article  Google Scholar 

  149. Judd RL, Hwang KS. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. J Heat Transfer. 1976;98:623–9. https://doi.org/10.1115/1.3450610.

    Article  CAS  Google Scholar 

  150. Nakayama W, Daikoku T, Kuwahara H, Nakajima T. Dynamic model of enhanced boiling heat transfer on porous surfaces: Part I: Experimental investigation. J Heat Transfer. 1980;102:445–50. https://doi.org/10.1115/1.3244320.

    Article  CAS  Google Scholar 

  151. Chien LH, Webb RL. Measurement of bubble dynamics on an enhanced boiling surface. Exp Therm Fluid Sci. 1998;16:177–86. https://doi.org/10.1016/S0894-1777(97)10017-6.

    Article  CAS  Google Scholar 

  152. McHale JP, Garimella SV. Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiph Flow. 2010;36:249–60. https://doi.org/10.1016/j.ijmultiphaseflow.2009.12.004.

    Article  CAS  Google Scholar 

  153. Zuber N, Hydrodynamics aspects of boiling heat transfer, US AEC Report AECU 4439, 1959.

  154. Dhir VK, Abarajith HS, Li D. Bubble dynamics and heat transfer during pool and flow boiling. Heat Transf Eng. 2007;28:608–24. https://doi.org/10.1080/01457630701266421.

    Article  CAS  Google Scholar 

  155. Qiu DM, Dhir VK, Chao D, Hasan MM, Neumann E, Yee G, et al. Single-bubble dynamics during pool boiling under low gravity conditions. J Thermophys Heat Transf. 2002;16:336–45. https://doi.org/10.2514/2.6710.

    Article  CAS  Google Scholar 

  156. Siedel S, Cioulachtjian S, Bonjour J. Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites. Exp Therm Fluid Sci. 2008;32:1504–11. https://doi.org/10.1016/j.expthermflusci.2008.04.004.

    Article  CAS  Google Scholar 

  157. Mukherjee A, Kandlikar SG. Effect of dynamic contact angle on single bubbles during nucleate pool boiling. American Society of Mechanical Engineers, Heat Transfer Division. HTD, vol. 375, American Society of Mechanical Engineers (ASME); 2004, p. 555–62. https://doi.org/10.1115/IMECE2004-59976.

  158. Mukherjee A, Dhir VK. Study of lateral merger of vapor bubbles during nucleate pool boiling. J Heat Transfer. 2004;126:1023–39. https://doi.org/10.1115/1.1834614.

    Article  CAS  Google Scholar 

  159. Mukherjee A, Mass SK-IJ of H and, 2007 undefined. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. Int J Heat Mass Tran. 2007;50(1–2):127–38.

  160. El-Genk MS, Ali AF. Saturation boiling on MPC: Effects of thickness, inclination angle, transient bubble growth, and nucleation site density. Multiph Sci Technol. 2013;25:201–36. https://doi.org/10.1615/MultScienTechn.v25.i2-4.80.

    Article  Google Scholar 

  161. Phan HT, Caney N, Marty P, Colasson S, Gavillet J. Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf. 2009;52:5459–71. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032.

    Article  CAS  Google Scholar 

  162. Hetsroni G, Mosyak A, Pogrebnyak E, Sher I, Segal Z. Bubble growth in saturated pool boiling in water and surfactant solution. Int J Multiph Flow. 2006;32:159–82. https://doi.org/10.1016/j.ijmultiphaseflow.2005.10.002.

    Article  CAS  Google Scholar 

  163. Cattide A, Celata GP, Di Marco P, Grassi W. Experimental study on bubble detachment under variable heat load and the action of electric field. Fluid Dyn Res. 2008;40:485–96. https://doi.org/10.1016/j.fluiddyn.2008.01.003.

    Article  Google Scholar 

  164. Ma X, Cheng P, Gong S, Quan X. Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions. Int J Heat Mass Transf. 2017;114:453–7. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.019.

    Article  Google Scholar 

  165. Zhang L, Shoji M. Nucleation site interaction in pool boiling on the artificial surface. Int J Heat Mass Transf. 2003;46:513–22. https://doi.org/10.1016/S0017-9310(02)00291-0.

    Article  Google Scholar 

  166. Nimkar ND, Bhavnani SH, Jaeger RC. Effect of nucleation site spacing on the pool boiling characteristics of a structured surface. Int J Heat Mass Transf. 2006;49:2829–39. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.018.

    Article  CAS  Google Scholar 

  167. Hutter C, Sefiane K, Karayiannis TG, Walton AJ, Nelson RA, Kenning DBR. Nucleation site interaction between artificial cavities during nucleate pool boiling on silicon with integrated micro-heater and temperature micro-sensors. Int J Heat Mass Transf. 2012;55:2769–78. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.014.

    Article  CAS  Google Scholar 

  168. Golobič I, Gjerkeš H. Interactions between laser-activated nucleation sites in pool boiling. Int J Heat Mass Transf. 2001;44:143–53. https://doi.org/10.1016/S0017-9310(00)00087-9.

    Article  Google Scholar 

  169. Akiyama M, Tachibana HON. Effects of system pressure on bubble growth rate. Trans JSME. 1969;35:117–26. https://doi.org/10.3901/CJME.2015.0703.086.

    Article  CAS  Google Scholar 

  170. Sakashita H. Bubble Growth Rates and Nucleation Site Densities in Saturated Pool Boiling of Water at High Pressures. J Nucl Sci Technol. 2011;48:734–43. https://doi.org/10.1080/18811248.2011.9711756.

    Article  CAS  Google Scholar 

  171. Lamas MI, Jabardo JMS, Arce A, Fariñas P. Numerical analysis of the bubble detachment diameter in nucleate boiling. Journal of Physics: Conference Series, vol. 395, Institute of Physics Publishing; 2012, p. 12174. https://doi.org/10.1088/1742-6596/395/1/012174.

  172. Hutter C, Kenning DBR, Sefiane K, Karayiannis TG, Lin H, Cummins G, et al. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors. Exp Therm Fluid Sci. 2010;34:422–33. https://doi.org/10.1016/j.expthermflusci.2009.03.010.

    Article  CAS  Google Scholar 

  173. Chen HX, Sun Y, Xiao HY, Wang XD. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions. J Therm Anal Calorim. 2020;141:447–64. https://doi.org/10.1007/s10973-020-09301-x.

    Article  CAS  Google Scholar 

  174. Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO 2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim. 2019;136:1781–93. https://doi.org/10.1007/s10973-018-7805-7.

    Article  CAS  Google Scholar 

  175. Gajghate SS, Barathula S, Das S, Saha BB, Bhaumik S. Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface. J Therm Anal Calorim. 2020;140:1393–411. https://doi.org/10.1007/s10973-019-08740-5.

    Article  CAS  Google Scholar 

  176. Das S, Johnsan R, Sujith Kumar CS, Datta A. Experimental study of pool boiling heat transfer on an annealed TiO2 nanofilm heating surface. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09503-3.

    Article  Google Scholar 

  177. Saffari H, Fathalizadeh H, Moghadasi H, Alipour S, Hosseinalipour SM. Experimental study of pool boiling enhancement for surface structuring with inclined intersected mesochannels using WEDM method on copper surfaces. J Therm Anal Calorim. 2020;139:1849–61. https://doi.org/10.1007/s10973-019-08601-1.

    Article  CAS  Google Scholar 

  178. Nunes JM, de Souza RR, Rodrigues AR, Safaei MR, Cardoso EM. Influence of coated surfaces and gap size on boiling heat transfer of deionized water. J Brazilian Soc Mech Sci Eng. 2020;42:1–14. https://doi.org/10.1007/s40430-020-2223-8.

    Article  CAS  Google Scholar 

  179. Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transf. 2014;71:189–96. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068.

    Article  Google Scholar 

  180. Li C, Wang Z, Wang P-I, Peles Y, Koratkar N, Peterson GP. Nanostructured copper interfaces for enhanced boiling. Small. 2008;4:1084–8. https://doi.org/10.1002/smll.200700991.

    Article  CAS  PubMed  Google Scholar 

  181. Park Y, Kim H, Kim J, Kim H. Measurement of liquid-vapor phase distribution on nano- and microstructured boiling surfaces. Int J Multiph Flow. 2016;81:67–76. https://doi.org/10.1016/j.ijmultiphaseflow.2016.01.007.

    Article  CAS  Google Scholar 

  182. Li S, Furberg R, Toprak MS, Palm B, Muhammed M. Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Funct Mater. 2008;18:2215–20. https://doi.org/10.1002/adfm.200701405.

    Article  CAS  Google Scholar 

  183. Rini DP, Chen RH, Chow LC. Bubble behavior and heat transfer mechanism in FC-72 pool boiling. Exp Heat Transf. 2001;14:27–44. https://doi.org/10.1080/089161501461620.

    Article  CAS  Google Scholar 

  184. Ramaswamy C, Joshi Y, Nakayama W, Johnson WB. High-speed visualization of boiling from an enhanced structure. Int J Heat Mass Transf. 2002;45:4761–71. https://doi.org/10.1016/S0017-9310(02)00196-5.

    Article  CAS  Google Scholar 

  185. El-Genk MS, Bostanci H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip. Int J Heat Mass Transf. 2003;46:1841–54. https://doi.org/10.1016/S0017-9310(02)00489-1.

    Article  CAS  Google Scholar 

  186. Demiray F, Kim J. Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling. Int J Heat Mass Transf. 2004;47:3257–68. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.008.

    Article  CAS  Google Scholar 

  187. Nimkar ND, Bhavnani SH, Jaeger RC. Benchmark heat transfer data for microstructured surfaces for immersion-cooled microelectronics. IEEE Trans Components Packag Technol. 2006;29:89–97. https://doi.org/10.1109/TCAPT.2005.850536.

    Article  CAS  Google Scholar 

  188. McHale JP, Garimella SV. Measurements of bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and roughened surfaces. 2008 Proceedings of the ASME Heat Transfer Summer Conference HT 2008, vol. 3, 2009, p. 619–29. https://doi.org/10.1115/ht2008-56179.

  189. McHale JP, Garimella SV. Nucleate boiling from smooth and rough surfaces - Part 2: Analysis of surface roughness effects on nucleate boiling. Exp Therm Fluid Sci. 2013;44:439–55. https://doi.org/10.1016/j.expthermflusci.2012.08.005.

    Article  CAS  Google Scholar 

  190. Anderson TM, Mudawar I. Microelectronic cooling by enhanced pool boiling of a dielectric fluorocarbon liquid. J Heat Transfer. 1989;111:752–9. https://doi.org/10.1115/1.3250747.

    Article  CAS  Google Scholar 

  191. Narumanchi S, Troshko A, Bharathan D, Hassani V. Numerical simulations of nucleate boiling in impinging jets: Applications in power electronics cooling. Int J Heat Mass Transf. 2008;51:1–12. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.026.

    Article  CAS  Google Scholar 

  192. Engelberg-Forster K, Greif R. Heat transfer to a boiling liquid—mechanism and correlations. J Heat Transfer. 1959;81:43–52. https://doi.org/10.1115/1.4008129.

    Article  CAS  Google Scholar 

  193. Ali AF, El-Genk MS. Spreaders for immersion nucleate boiling cooling of a computer chip with a central hot spot. Energy Convers Manag. 2012;53:259–67. https://doi.org/10.1016/j.enconman.2011.09.007.

    Article  CAS  Google Scholar 

  194. Birbarah P, Gebrael T, Foulkes T, Stillwell A, Moore A, Pilawa-Podgurski R, et al. Water immersion cooling of high power density electronics. Int J Heat Mass Transf. 2020;147:118918. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118918.

    Article  CAS  Google Scholar 

  195. Gang P, Huide F, Huijuan Z, Jie J. Performance study and parametric analysis of a novel heat pipe PV/T system. Energy. 2012;37:384–95. https://doi.org/10.1016/j.energy.2011.11.017.

    Article  CAS  Google Scholar 

  196. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC. Heat pipe based systems - Advances and applications. Energy. 2017;128:729–54. https://doi.org/10.1016/j.energy.2017.04.028.

    Article  Google Scholar 

  197. Chaudhry HN, Hughes BR, Ghani SA. A review of heat pipe systems for heat recovery and renewable energy applications. Renew Sustain Energy Rev. 2012;16:2249–59. https://doi.org/10.1016/j.rser.2012.01.038.

    Article  CAS  Google Scholar 

  198. Cui Y, Yu H, Wang H, Wang Z, Yan X. The numerical modeling of the vapor bubble growth on the silicon substrate inside the flat plate heat pipe. Int J Heat Mass Transf. 2020;147:118945. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118945.

    Article  CAS  Google Scholar 

  199. Kiatsiriroat T, Nuntaphan A, Tiansuwan J. Thermal performance enhancement of thermosyphon heat pipe with binary working fluids. Exp Heat Transf. 2000;13:137–52. https://doi.org/10.1080/089161500269517.

    Article  Google Scholar 

  200. Bolozdynya AI, Dmitrenko VV, Efremenko YV, Khromov AV, Shafigullin RR, Shakirov AV, et al. The two-phase closed tubular cryogenic thermosyphon. Int J Heat Mass Transf. 2015;80:159–62. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.001.

    Article  CAS  Google Scholar 

  201. Hijikata K, Chen SJ, Tien CL. Non-condensable gas effect on condensation in a two-phase closed thermosyphon. Int J Heat Mass Transf. 1984;27:1319–25. https://doi.org/10.1016/0017-9310(84)90059-0.

    Article  CAS  Google Scholar 

  202. Lee J, Kim Y, Jeong S. Transient thermodynamic behavior of cryogenic mixed fluid thermosiphon and its cool-down time estimation. Cryogenics (Guildf). 2010;50:352–8. https://doi.org/10.1016/j.cryogenics.2010.02.001.

    Article  CAS  Google Scholar 

  203. Felder B, Miki M, Deng Z, Tsuzuki K, Shinohara N, Izumi M, et al. Development of a cryogenic helium-neon gas mixture cooling system for use in a Gd-bulk HTS synchronous motor. IEEE Trans Appl Supercond. 2011;21:2213–6. https://doi.org/10.1109/TASC.2010.2101573.

    Article  CAS  Google Scholar 

  204. Christie R, Robinson D, Plachta D. Design and Operating Characteristics of a Cryogenic Nitrogen Thermosyphon. AIP Conference Proceedings, vol. 710, American Institute of Physics Inc.; 2004, p. 1079–90. https://doi.org/10.1063/1.1774792.

  205. Zhou DW, Ma CF. Local jet impingement boiling heat transfer with R113. Heat Mass Transf Und Stoffuebertragung. 2004;40:539–49. https://doi.org/10.1007/s00231-003-0463-7.

    Article  CAS  Google Scholar 

  206. Wolf DH, Incropera FP, Viskanta R. Jet Impingement Boiling. Adv Heat Transf. 1993;23:1–132. https://doi.org/10.1016/S0065-2717(08)70005-4.

    Article  CAS  Google Scholar 

  207. Mitsutake Y, Monde M. Ultra high critical heat flux during forced flow boiling heat transfer with an impinging jet. J Heat Transfer. 2003;125:1038–45. https://doi.org/10.1115/1.1621899.

    Article  Google Scholar 

  208. Liu ZH, Tong TF, Qiu YH. Critical heat flux of steady boiling for subcooled water jet impingement on the flat stagnation zone. J Heat Transfer. 2004;126:179–83. https://doi.org/10.1115/1.1668054.

    Article  CAS  Google Scholar 

  209. Ruch MA, Holman JP. Boiling heat transfer to a freon-113 jet impinging upward onto a flat, heated surface. Int J Heat Mass Transf. 1975;18:51–60. https://doi.org/10.1016/0017-9310(75)90007-1.

    Article  CAS  Google Scholar 

  210. Ma CF, Bergles AE. Jet impingement nucleate boiling. Int J Heat Mass Transf. 1986;29:1095–101. https://doi.org/10.1016/0017-9310(86)90140-7.

    Article  CAS  Google Scholar 

  211. Bergles E, Ma C-F. Boiling jet impingement cooling of simulated microelectronic chips. Heat transfer in electronic equipment; Proceedings of the Symposium, Boston, MA, November 13–18, 1983

  212. Monde M, Katto Y. Burnout in a high heat-flux boiling system with an impinging jet. Int J Heat Mass Transf. 1978;21:295–305. https://doi.org/10.1016/0017-9310(78)90122-9.

    Article  CAS  Google Scholar 

  213. Katto Y, Kunihiro M. Study of the mechanism of burn-out in boiling system of high burn-out heat flux. Bull JSME. 1973;16:1357–66. https://doi.org/10.1299/jsme1958.16.1357.

    Article  Google Scholar 

  214. Wadsworth DC, Mudawar I. Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid. J Heat Transfer. 1990;112:891–8. https://doi.org/10.1115/1.2910496.

    Article  CAS  Google Scholar 

  215. Mudawar I, Wadsworth DC. Critical heat flux from a simulated chip to a confined rectangular impinging jet of dielectric liquid. Int J Heat Mass Transf. 1991;34:1465–79. https://doi.org/10.1016/0017-9310(91)90289-Q.

    Article  CAS  Google Scholar 

  216. Miyasaka Y, Inada S, Owase Y. Critical heat flux and subcooled nucleate boiling in transient region between a two-dimensional water jet and a heated surface. J Chem Eng Japan. 1980;13:29–35. https://doi.org/10.1252/jcej.13.29.

    Article  CAS  Google Scholar 

  217. Sekoguchi K, Tsutsui M, Nishikawa K, Fukui H. Investigation into the statistical characteristics of bubbles in two-phase flow - 2nd report, the application and establishment of electric resistivity probe method. Bull JSME (Jap Soc Mech Eng). 1975;18:387–404. https://doi.org/10.1299/kikai1938.40.2302.

    Article  Google Scholar 

  218. Xie J, Wong TN, Duan F. Modelling on the dynamics of droplet impingement and bubble boiling in spray cooling. Int J Therm Sci. 2016;104:469–79. https://doi.org/10.1016/j.ijthermalsci.2016.02.016.

    Article  Google Scholar 

  219. Rini DP, Chen RH, Chow LC. Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling. J Heat Transfer. 2002;124:63–72. https://doi.org/10.1115/1.1418365.

    Article  CAS  Google Scholar 

  220. Wang JX, Li YZ, Zhang HS, Wang SN, Mao YF, Zhang YN, et al. Investigation of a spray cooling system with two nozzles for space application. Appl Therm Eng. 2015;89:115–24. https://doi.org/10.1016/j.applthermaleng.2015.05.082.

    Article  Google Scholar 

  221. Silk EA, Kim J, Kiger K. Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination. Int J Heat Mass Transf. 2006;49:4910–20. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.031.

    Article  Google Scholar 

  222. Elston L, Yerkes K, Thomas S, McQuillen J. Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array. 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., Reston, Virigina: American Institute of Aeronautics and Astronautics; 2009. https://doi.org/10.2514/6.2009-1025.

  223. Xie JL, Tan YB, Wong TN, Duan F, Toh KC, Choo KF, et al. Multi-nozzle array spray cooling for large area high power devices in a closed loop system. Int J Heat Mass Transf. 2014;78:1177–86. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.067.

    Article  CAS  Google Scholar 

  224. Yan ZB, Toh KC, Duan F, Wong TN, Choo KF, Chan PK, et al. Experimental study of impingement spray cooling for high power devices. Appl Therm Eng. 2010;30:1225–30. https://doi.org/10.1016/j.applthermaleng.2010.02.003.

    Article  CAS  Google Scholar 

  225. Lin L, Ponnappan R, Yerkes K. Actively pumped two-phase loop for spray cooling. J Thermophys Heat Transf. 2006;20:107–10. https://doi.org/10.2514/1.15053.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the National Science Foundation (Grant #: 1917272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeongsub Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazivini, M., Hafez, M., Ratanpara, A. et al. A review on correlations of bubble growth mechanisms and bubble dynamics parameters in nucleate boiling. J Therm Anal Calorim 147, 6035–6071 (2022). https://doi.org/10.1007/s10973-021-10876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10876-2

Keywords

Navigation