Skip to main content
Log in

Soft and hard confinement of a two-electron quantum system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A model physical problem is studied in which a system of two electrons is subject either to soft confinement by means of attractive oscillator potentials or by entrapment within an impenetrable spherical box of finite radius R. When hard confinement is present the oscillators can be switched off. Exact analytical solutions are found for special parameter sets, and highly accurate numerical solutions (18 decimal places) are obtained for general cases. Some interesting degeneracy questions are discussed at length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Sabin, E.J. Brändas, S.A. Cruz (Editors), Advances in quantum chemistry: theory of confined quantum systems - Part one, book 57 (Academic Press, New York, 2009).

  2. K.D. Sen (Editor), Electronic structure of quantum confined atoms and molecules (Springer, UK, 2014).

  3. Y. Sajeev, N. Moiseyev, Phys. Rev. B 78, 075316 (2008).

    Article  ADS  Google Scholar 

  4. M. Genkin, E. Lindroth, Phys. Rev. B 81, 125315 (2010).

    Article  ADS  Google Scholar 

  5. S. Chakraborty, Y.K. Ho, Phys. Rev. A 84, 032515 (2011).

    Article  ADS  Google Scholar 

  6. M. Taut, Phys. Rev. A 48, 3561 (1993).

    Article  ADS  Google Scholar 

  7. A.I. Pupyshev, A.V. Scherbinin, Chem. Phys. Lett. 295, 217 (1998).

    Article  ADS  Google Scholar 

  8. A.I. Pupyshev, A.V. Scherbinin, Phys. Lett. A 299, 371 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. D.R. Herrick, J. Math. Phys. 16, 281 (1975).

    Article  ADS  Google Scholar 

  10. D.R. Herrick, F.H. Stillinger, Phys. Rev. A 11, 42 (1975).

    Article  ADS  Google Scholar 

  11. K.D. Sen, H.E. Montgomery Jr., N.A. Aquino, Int. J. Quantum Chem. 107, 798 (2007).

    Article  ADS  Google Scholar 

  12. K.D. Sen, V.I. Pupyshev, H.E. Montgomery Jr., Ad. Quantum Chem. 57, 25 (2009).

    Article  ADS  Google Scholar 

  13. Muzaian A. Shaqqor, Sami M. AL-Jaber, Int. J. Theor. Phys. 48, 2462 (2009).

    Article  MATH  Google Scholar 

  14. H.E. Montgomery Jr., G. Campoy, N. Aquino, Phys. Scr. 81, 045010 (2010).

    Article  ADS  Google Scholar 

  15. Xiao-Yan Gu, Jian-Qiang Sun, J. Math. Phys. 51, 022106 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Agboola, Pramana 76, 875 (2011).

    Article  ADS  Google Scholar 

  17. J.D. Louck, J. Mol. Spectrosc. 4, 298 (1960).

    Article  ADS  Google Scholar 

  18. A. Chatterjee, Phys. Rep. 186, 249 (1990).

    Article  ADS  Google Scholar 

  19. K. Atkinson, W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction (Springer, New York, 2012).

  20. D.J. Doren, D.R. Herschbach, J. Chem. Phys. 85, 4557 (1986).

    Article  ADS  Google Scholar 

  21. R.L. Hall, Phys. Rev. D 22, 2062 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  22. R.L. Hall, J. Math. Phys. 24, 324 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  23. R.L. Hall, J. Math. Phys. 25, 2708 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  24. R.L. Hall, Phys. Rev. A 39, 550 (1989).

    Article  ADS  Google Scholar 

  25. R.L. Hall, J. Math. Phys. 33, 1710 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  26. R.L. Hall, J. Math. Phys. 34, 2779 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. S.J. Gustafson, I.M. Sigal, Mathematical concepts of quantum mechanics (Springer, New York, 2006) (the operator inequality is proved for dimensions d ≥ 3 on page 32).

  28. M. Reed, B. Simon, Methods of modern mathematical physics II: Fourier analysis and self-adjointness (Academic Press, New york, 1975) (the operator inequality is proved for d = 3 on p. 169).

  29. A.K. Common, J. Phys. A 18, 2219 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  30. W. Thirring, A Course in Mathematical Physics 3: Quantum Mechanics of Atoms and Molecules (Springer, New York/Wien, 1990) (the local energy theorem is discussed on p. 154).

  31. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. N. Saad, R.L. Hall, H. Ciftci, J. Phys. A: Math. Gen. 39, 13445 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. H. Ciftci, R.L. Hall, N. Saad, E. Dogu, J. Phys. A: Math. Theor. 43, 415206 (2010).

    Article  MathSciNet  Google Scholar 

  34. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: non-relativistic theory (Pergamon, London, 1981).

  35. F.M. Arscott, Periodic Differential Equations: An Introduction to Mathieu, Lamé, and Allied Functions (Pergamon Press, 1964).

  36. A. Hautot, Bull. Soc. R. Sci. Liége 38, 1969 (654).

  37. A. Hautot, Bull. Soc. R. Sci. Liége 38, 1969 (660).

  38. J. Rovder, Mat. Căs. 24, 15 (1974).

    MATH  MathSciNet  Google Scholar 

  39. R.L. Hall, N. Saad, K. Sen, J. Math. Phys. 52, 092103 (2011).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, R.L., Saad, N. & Sen, K.D. Soft and hard confinement of a two-electron quantum system. Eur. Phys. J. Plus 129, 274 (2014). https://doi.org/10.1140/epjp/i2014-14274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14274-0

Keywords

Navigation