Skip to main content
Log in

A molecularly informed field-theoretic study of the complexation of polycation PDADMA with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

This article has been updated

Abstract

The self-assembly and phase separation of mixtures of polyelectrolytes and surfactants are important to a range of applications, from formulating personal care products to drug encapsulation. In contrast to systems of oppositely charged polyelectrolytes, in polyelectrolyte-surfactant systems the surfactants micellize into structures that are highly responsive to solution conditions. In this work, we examine how the morphology of micelles and degree of polyelectrolyte adsorption dynamically change upon varying the mixing ratio of charged and neutral surfactants. Specifically, we consider a solution of the cationic polyelectrolyte polydiallyldimethylammonium, anionic surfactant sodium dodecyl sulfate, neutral ethoxylated surfactants (C\(_m\)EO\(_n\)), sodium chloride salt, and water. To capture the chemical specificity of these species, we leverage recent developments in constructing molecularly informed field theories via coarse-graining from all-atom simulations. Our results show how changing the surfactant mixing ratios and the identity of the nonionic surfactant modulates micelle size and surface charge, and as a result dictates the degree of polyelectrolyte adsorption. These results are in semi-quantitative agreement with experimental observations on the same system.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 24 September 2023

    The figure in the Graphical Abstract on the html version has been updated for an accurate visual presentation

References

  1. E. Goddard, Polymer/surfactant interaction-its relevance to detergent systems. J. Am. Oil. Chem. Soc. 71(1), 1–16 (1994)

    Article  Google Scholar 

  2. K. Bali, Z. Varga, A. Kardos, I. Varga, T. Gilányi, A. Domján, A. Wacha, A. Bóta, J. Mihály, R. Mészáros, Effect of dilution on the nonequilibrium polyelectrolyte/surfactant association. Langmuir 34(48), 14652–14660 (2018)

    Article  Google Scholar 

  3. R. Bradbury, J. Penfold, R.K. Thomas, I.M. Tucker, J.T. Petkov, C. Jones, Manipulating perfume delivery to the interface using polymer-surfactant interactions. J. Colloid Interface Sci. 466, 220–226 (2016)

    Article  ADS  Google Scholar 

  4. N. Kristen, R. von Klitzing, Effect of polyelectrolyte/surfactant combinations on the stability of foam films. Soft Matter. 6(5), 849–861 (2010)

    Article  ADS  Google Scholar 

  5. S. Llamas, E. Guzman, F. Ortega, N. Baghdadli, C. Cazeneuve, R.G. Rubio, G.S. Luengo, Adsorption of polyelectrolytes and polyelectrolytes-surfactant mixtures at surfaces: a physico-chemical approach to a cosmetic challenge. Adv. Coll. Interface. Sci. 222, 461–487 (2015)

    Article  Google Scholar 

  6. C.G. De Kruif, F. Weinbreck, R. de Vries, Complex coacervation of proteins and anionic polysaccharides. Current Opin. Colloid Interface Sci. 9(5), 340–349 (2004)

    Article  Google Scholar 

  7. V. Tolstoguzov, Some physico-chemical aspects of protein processing in foods multicomponent gels. Food Hydrocoll. 9(4), 317–332 (1995)

    Article  Google Scholar 

  8. F. Weinbreck, R. De Vries, P. Schrooyen, C. De Kruif, Complex coacervation of whey proteins and gum arabic. Biomacromol 4(2), 293–303 (2003)

    Article  Google Scholar 

  9. K.S. Mayya, A. Bhattacharyya, J.F. Argillier, Micro-encapsulation by complex coacervation: influence of surfactant. Polym. Int. 52(4), 644–647 (2003)

    Article  Google Scholar 

  10. Y.V. Shulevich, T.H. Nguyen, D.S. Tutaev, A.V. Navrotskii, I.A. Novakov, Purification of fat-containing wastewater using polyelectrolyte-surfactant complexes. Sep. Purif. Technol. 113, 18–23 (2013)

    Article  Google Scholar 

  11. M. Singh, M. Briones, G. Ott, D. O’Hagan, Cationic microparticles: a potent delivery system for dna vaccines. Proc. Natl. Acad. Sci. 97(2), 811–816 (2000)

    Article  ADS  Google Scholar 

  12. K. Hayakawa, J.C. Kwak, Surfactant-polyelectrolyte interactions. 1. Binding of dodecyltrimethylammonium ions by sodium dextransulfate and sodium poly (styrenesulfonate) in aqueous solution in the presence of sodium chloride. J. Phys. Chem. 86(19), 3866–3870 (1982)

    Article  Google Scholar 

  13. K. Hayakawa, J.C. Kwak, Study of surfactant-polyelectrolyte interactions. 2. Effect of multivalent counterions on the binding of dodecyltrimethylammonium ions by sodium dextran sulfate and sodium poly (styrene sulfonate) in aqueous solution. J. Phys. Chem. 87(3), 506–509 (1983)

    Article  Google Scholar 

  14. N. Khan, B. Brettmann, Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers 11(1), 51 (2018)

    Article  Google Scholar 

  15. M. López-López, P. López-Cornejo, V.I. Martín, F.J. Ostos, C. Checa-Rodríguez, R. Prados-Carvajal, J.A. Lebrón, P. Huertas, M.L. Moyá, Importance of hydrophobic interactions in the single-chained cationic surfactant-dna complexation. J. Colloid Interface Sci. 521, 197–205 (2018)

    Article  ADS  Google Scholar 

  16. K. Thalberg, B. Lindman, K. Bergfeldt, Phase behavior of systems of polyacrylate and cationic surfactants. Langmuir 7(12), 2893–2898 (1991)

    Article  Google Scholar 

  17. Y. Wang, K. Kimura, Q. Huang, P.L. Dubin, W. Jaeger, Effects of salt on polyelectrolyte- micelle coacervation. Macromolecules 32(21), 7128–7134 (1999)

    Article  ADS  Google Scholar 

  18. A.Y. Xu, E. Kizilay, S.P. Madro, J.Z. Vadenais, K.W. McDonald, P.L. Dubin, Dilution induced coacervation in polyelectrolyte-micelle and polyelectrolyte-protein systems. Soft Matter. 14(12), 2391–2399 (2018)

    Article  ADS  Google Scholar 

  19. L. Chiappisi, I. Hoffmann, M. Gradzielski, Complexes of oppositely charged polyelectrolytes and surfactants-recent developments in the field of biologically derived polyelectrolytes. Soft Matter 9(15), 3896–3909 (2013)

    Article  ADS  Google Scholar 

  20. A.M. Benhur, J. Diaz, S. Amin, Impact of polyelectrolyte-surfactant interactions on the rheology and wet lubrication performance of conditioning shampoo. Int. J. Cosmet. Sci. 43(2), 246–253 (2021)

    Article  Google Scholar 

  21. I.S. Chronakis, P. Alexandridis, Rheological properties of oppositely charged polyelectrolyte- surfactant mixtures: effect of polymer molecular weight and surfactant architecture. Macromolecules 34(14), 5005–5018 (2001)

    Article  ADS  Google Scholar 

  22. L. Maibaum, A.R. Dinner, D. Chandler, Micelle formation and the hydrophobic effect. J. Phys. Chem. B 108(21), 6778–6781 (2004)

    Article  Google Scholar 

  23. N. Jain, S. Trabelsi, S. Guillot, D. McLoughlin, D. Langevin, P. Letellier, M. Turmine, Critical aggregation concentration in mixed solutions of anionic polyelectrolytes and cationic surfactants. Langmuir 20(20), 8496–8503 (2004)

    Article  Google Scholar 

  24. J.J. Madinya, C.E. Sing, Hybrid field theory and particle simulation model of polyelectrolyte-surfactant coacervation. Macromolecules 55(6), 2358–2373 (2022)

    Article  ADS  Google Scholar 

  25. T. Wallin, P. Linse, Polyelectrolyte-induced micellization of charged surfactants calculations based on a self-consistent field lattice model. Langmuir 14(11), 2940–2949 (1998)

    Article  Google Scholar 

  26. Y. Li, P.L. Dubin, H.A. Havel, S.L. Edwards, H. Dautzenberg, Complex formation between polyelectrolyte and oppositely charged mixed micelles: soluble complexes vs coacervation. Langmuir 11(7), 2486–2492 (1995)

    Article  Google Scholar 

  27. M. Antonietti, J. Conrad, A. Thuenemann, Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 27(21), 6007–6011 (1994)

    Article  ADS  Google Scholar 

  28. Y. Lapitsky, E.W. Kaler, Surfactant and polyelectrolyte gel particles for encapsulation and release of aromatic oils. Soft Matter. 2(9), 779–784 (2006)

    Article  ADS  Google Scholar 

  29. L.M. Bergström, U.M. Kjellin, P.M. Claesson, I. Grillo, Small-angle neutron scattering study of mixtures of cationic polyelectrolyte and anionic surfactant: Effect of polyelectrolyte charge density. J. Phys. Chem. B 108(6), 1874–1881 (2004)

    Article  Google Scholar 

  30. M. Gradzielski, I. Hoffmann, Polyelectrolyte-surfactant complexes (pescs) composed of oppositely charged components. Current Opin. Colloid Interface Sci. 35, 124–141 (2018)

    Article  Google Scholar 

  31. M. Goswami, J.M. Borreguero, P.A. Pincus, B.G. Sumpter, Surfactant-mediated polyelectrolyte self-assembly in a polyelectrolyte-surfactant complex. Macromolecules 48(24), 9050–9059 (2015)

    Article  ADS  Google Scholar 

  32. Y. Fan, M. Kellermeier, A.Y. Xu, V. Boyko, S. Mirtschin, P.L. Dubin, Modulation of polyelectrolyte-micelle interactions via zeta potentials. Macromolecules 50(14), 5518–5526 (2017)

    Article  ADS  Google Scholar 

  33. D. Li, M.S. Kelkar, N.J. Wagner, Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: A cationic polymer jr 400 and anionic surfactant sds mixture. Langmuir 28(28), 10348–10362 (2012)

    Article  Google Scholar 

  34. G.B. Messaoud, L. Promeneur, M. Brennich, S.L. Roelants, P. Le Griel, N. Baccile, Complex coacervation of natural sophorolipid bolaamphiphile micelles with cationic polyelectrolytes. Green Chem. 20(14), 3371–3385 (2018)

    Article  Google Scholar 

  35. F. Guillemet, L. Piculell, Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant mixed micelle formation and associative phase separation. J. Phys. Chem. 99(22), 9201–9209 (1995)

    Article  Google Scholar 

  36. A. Svensson, L. Piculell, B. Cabane, P. Ilekti, A new approach to the phase behavior of oppositely charged polymers and surfactants. J. Phys. Chem. B 106(5), 1013–1018 (2002)

    Article  Google Scholar 

  37. M. Muthukumar, 50th anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules 50(24), 9528–9560 (2017)

    Article  ADS  Google Scholar 

  38. E. Kizilay, A.B. Kayitmazer, P.L. Dubin, Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Coll. Interface. Sci. 167(1–2), 24–37 (2011)

    Article  Google Scholar 

  39. G. Pandav, V. Pryamitsyn, J. Errington, V. Ganesan, Multibody interactions, phase behavior, and clustering in nanoparticle-polyelectrolyte mixtures. J. Phys. Chem. B 119(45), 14536–14550 (2015)

    Article  Google Scholar 

  40. M. Antonov, M. Mazzawi, P.L. Dubin, Entering and exiting the protein- polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions. Biomacromol 11(1), 51–59 (2010)

    Article  Google Scholar 

  41. A.C. Obermeyer, C.E. Mills, X.H. Dong, R.J. Flores, B.D. Olsen, Complex coacervation of supercharged proteins with polyelectrolytes. Soft Matter. 12(15), 3570–3581 (2016)

    Article  ADS  Google Scholar 

  42. F. Comert, P.L. Dubin, Liquid-liquid and liquid-solid phase separation in protein-polyelectrolyte systems. Adv. Coll. Interface. Sci. 239, 213–217 (2017)

    Article  Google Scholar 

  43. P.L. Dubin, M.E. Curran, J. Hua, Critical linear charge density for binding of a weak polycation to an anionic/nonionic mixed micelle. Langmuir 6(3), 707–709 (1990)

    Article  Google Scholar 

  44. K. Shen, Z.G. Wang, Electrostatic correlations and the polyelectrolyte self energy. J. Chem. Phys. 146(8), 084901 (2017)

    Article  ADS  Google Scholar 

  45. P. Zhang, K. Shen, N.M. Alsaifi, Z.G. Wang, Salt partitioning in complex coacervation of symmetric polyelectrolytes. Macromolecules 51(15), 5586–5593 (2018)

    Article  ADS  Google Scholar 

  46. K. Shen, Z.G. Wang, Polyelectrolyte chain structure and solution phase behavior. Macromolecules 51(5), 1706–1717 (2018)

    Article  ADS  Google Scholar 

  47. T.K. Lytle, C.E. Sing, Transfer matrix theory of polymer complex coacervation. Soft Matter. 13(39), 7001–7012 (2017)

    Article  ADS  Google Scholar 

  48. L.W. Chang, T.K. Lytle, M. Radhakrishna, J.J. Madinya, J. Vélez, C.E. Sing, S.L. Perry, Sequence and entropy-based control of complex coacervates. Nat. Commun. 8(1), 1273 (2017)

    Article  ADS  Google Scholar 

  49. J. Lou, S. Friedowitz, J. Qin, Y. Xia, Tunable coacervation of well-defined homologous polyanions and polycations by local polarity. ACS Cent. Sci. 5(3), 549–557 (2019)

    Article  Google Scholar 

  50. A.M. Rumyantsev, N.E. Jackson, J.J. De Pablo, Polyelectrolyte complex coacervates: recent developments and new frontiers. Ann. Rev. Condens. Matter. Phys. 12, 155–176 (2021)

    Article  ADS  Google Scholar 

  51. A.M. Rumyantsev, A. Johner, M.V. Tirrell, J.J. de Pablo, Unifying weak and strong charge correlations within the random phase approximation: polyampholytes of various sequences. Macromolecules 55(14), 6260–6274 (2022)

    Article  ADS  Google Scholar 

  52. C.E. Sing, S.L. Perry, Recent progress in the science of complex coacervation. Soft Matter. 16(12), 2885–2914 (2020)

    Article  ADS  Google Scholar 

  53. T.K. Lytle, C.E. Sing, Tuning chain interaction entropy in complex coacervation using polymer stiffness, architecture, and salt valency. Mol. Syst. Design Eng. 3(1), 183–196 (2018)

    Article  Google Scholar 

  54. S. Friedowitz, J. Qin, Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J. 67(12), e17426 (2021)

    Article  Google Scholar 

  55. S. Friedowitz, J. Lou, K.P. Barker, K. Will, Y. Xia, J. Qin, Looping-in complexation and ion partitioning in nonstoichiometric polyelectrolyte mixtures. Sci. Adv. 7(31), eabg8654 (2021)

    Article  ADS  Google Scholar 

  56. S. Friedowitz, A. Salehi, R.G. Larson, J. Qin, Role of electrostatic correlations in polyelectrolyte charge association. J. Chem. Phys. 149(16), 163335 (2018)

    Article  ADS  Google Scholar 

  57. A.M. Rumyantsev, O.V. Borisov, J.J. de Pablo, Structure and dynamics of hybrid colloid–polyelectrolyte coacervates. Macromolecules (2023)

  58. R.D. Groot, Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. J. Chem. Phys. 118(24), 11265–11277 (2003)

    Article  ADS  Google Scholar 

  59. J.M. Borreguero, P.A. Pincus, B.G. Sumpter, M. Goswami, Unraveling the agglomeration mechanism in charged block copolymer and surfactant complexes. Macromolecules 50(3), 1193–1205 (2017)

    Article  ADS  Google Scholar 

  60. P. Hansson, Phase behavior of aqueous polyion-surfactant ion complex salts: a theoretical analysis. J. Colloid Interface Sci. 332(1), 183–193 (2009)

    Article  ADS  Google Scholar 

  61. B. Wen, B. Bai, R.G. Larson, Surfactant desorption and scission free energies for cylindrical and spherical micelles from umbrella-sampling molecular dynamics simulations. J. Colloid Interface Sci. 599, 773–784 (2021)

    Article  ADS  Google Scholar 

  62. R. Becker, W. Döring, Kinetische behandlung der keimbildung in übersättigten dämpfen. Ann. Phys. 416(8), 719–752 (1935)

    Article  MATH  Google Scholar 

  63. J.A. Mysona, A.V. McCormick, D.C. Morse, Mechanism of micelle birth and death. Phys. Rev. Lett. 123(3), 038003 (2019)

    Article  ADS  Google Scholar 

  64. E. Aniansson, S.N. Wall, Kinetics of step-wise micelle association. J. Phys. Chem. 78(10), 1024–1030 (1974)

    Article  Google Scholar 

  65. B.G. Levine, D.N. LeBard, R. DeVane, W. Shinoda, A. Kohlmeyer, M.L. Klein, Micellization studied by gpu-accelerated coarse-grained molecular dynamics. J. Chem. Theory Comput. 7(12), 4135–4145 (2011)

    Article  Google Scholar 

  66. D.N. LeBard, B.G. Levine, P. Mertmann, S.A. Barr, A. Jusufi, S. Sanders, M.L. Klein, A.Z. Panagiotopoulos, Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units. Soft Matter. 8(8), 2385–2397 (2012)

    Article  ADS  Google Scholar 

  67. M. Jonsson, P. Linse, Polyelectrolyte-macroion complexation. i. effect of linear charge density, chain length, and macroion charge. J. Chem. Phys. 115(7), 3406–3418 (2001)

    Article  ADS  Google Scholar 

  68. T. Wallin, P. Linse, Monte carlo simulations of polyelectrolytes at charged micelles. 3. effects of surfactant tail length. J. Phys. Chem. B 101(28), 5506–5513 (1997)

    Article  Google Scholar 

  69. R. Allen, P. Warren, Phase behaviour of oppositely charged polymer/surfactant mixtures. Europhys. Lett. 64(4), 468 (2003)

    Article  ADS  Google Scholar 

  70. N. Sherck, K. Shen, M. Nguyen, B. Yoo, S. Kohler, J.C. Speros, K.T. Delaney, M.S. Shell, G.H. Fredrickson, Molecularly informed field theories from bottom-up coarse-graining. ACS Macro Lett. 10(5), 576–583 (2021)

    Article  Google Scholar 

  71. M. Nguyen, N. Sherck, K. Shen, C.E. Edwards, B. Yoo, S. Köhler, J.C. Speros, M.E. Helgeson, K.T. Delaney, M.S. Shell et al., Predicting polyelectrolyte coacervation from a molecularly informed field-theoretic model. Macromolecules 55(21), 9868–9879 (2022)

    Article  ADS  Google Scholar 

  72. K. Shen, M. Nguyen, N. Sherck, B. Yoo, S. Köhler, J. Speros, K.T. Delaney, M.S. Shell, G.H. Fredrickson, Predicting surfactant phase behavior with a molecularly informed field theory. J. Colloid Interface Sci. 638, 84–98 (2023)

    Article  ADS  Google Scholar 

  73. M.S. Shell, Coarse-graining with the relative entropy. Adv. Chem. Phys. 161, 395–441 (2016)

    Google Scholar 

  74. G. Fredrickson, et al., The equilibrium theory of inhomogeneous polymers, vol. 134 (Oxford University Press on Demand, 2006)

  75. S. Izadi, R. Anandakrishnan, A.V. Onufriev, Building water models: a different approach. J. Phys. Chem. Lett. 5(21), 3863–3871 (2014)

    Article  Google Scholar 

  76. I.S. Joung, T.E. Cheatham III., Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112(30), 9020–9041 (2008)

    Article  Google Scholar 

  77. J. Wang, M. Wolf Romain, W. Caldwell James, A. Kollman Peter, A. Case David, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004). https://doi.org/10.1002/jcc.20035

    Article  Google Scholar 

  78. C.J. Dickson, B.D. Madej, Å.A. Skjevik, R.M. Betz, K. Teigen, I.R. Gould, R.C. Walker, Lipid14: the amber lipid force field. J. Chem. Theory Comput. 10(2), 865–879 (2014)

    Article  Google Scholar 

  79. H. Yan, S.L. Yuan, G.Y. Xu, C.B. Liu, Effect of ca2+ and mg2+ ions on surfactant solutions investigated by molecular dynamics simulation. Langmuir 26(13), 10448–10459 (2010)

    Article  Google Scholar 

  80. P. Eastman, J. Swails, J.D. Chodera, R.T. McGibbon, Y. Zhao, K.A. Beauchamp, L.P. Wang, A.C. Simmonett, M.P. Harrigan, C.D. Stern et al., Openmm 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13(7), e1005659 (2017)

    Article  Google Scholar 

  81. L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)

    Article  Google Scholar 

  82. K. Shen, N. Sherck, M. Nguyen, B. Yoo, S. Köhler, J. Speros, K.T. Delaney, G.H. Fredrickson, M.S. Shell, Learning composition-transferable coarse-grained models: designing external potential ensembles to maximize thermodynamic information. J. Chem. Phys. 153(15), 154116 (2020)

    Article  ADS  Google Scholar 

  83. J. Saathoff, Effectively parameterizing dissipative particle dynamics using cosmo-sac: a partition coefficient study. J. Chem. Phys. 148(15). (2018)

  84. D.W. McQuigg, J.I. Kaplan, P.L. Dubin, Critical conditions for the binding of polyelectrolytes to small oppositely charged micelles. J. Phys. Chem. 96(4), 1973–1978 (1992)

  85. J.L. Barrat, G.H. Fredrickson, S.W. Sides, Introducing variable cell shape methods in field theory simulations of polymers. J. Phys. Chem. B 109(14), 6694–6700 (2005)

    Article  Google Scholar 

  86. D.J. Mitchell, G.J. Tiddy, L. Waring, T. Bostock, M.P. McDonald, Phase behaviour of polyoxyethylene surfactants with water mesophase structures and partial miscibility cloud points. J. Chem. Soc. Faraday Transact. 1: Phys. Chem. Condensed Phases, 79(4): 975–1000 (1983)

  87. E.M. Lennon, G.O. Mohler, H.D. Ceniceros, C.J. García-Cervera, G.H. Fredrickson, Numerical solutions of the complex langevin equations in polymer field theory. Multiscale Model. Simul. 6(4), 1347–1370 (2008)

  88. J. Lequieu, T. Koeper, K.T. Delaney, G.H. Fredrickson, Extreme deflection of phase boundaries and chain bridging in a (ba’) n miktoarm star polymers. Macromolecules 53(2), 513–522 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by BASF Corporation through the California Research Alliance. We thank Keith Gutowski for generously sharing papers and engaging in insightful discussions with us. G.H.F. and K.T.D. also derived partial support from the National Science Foundation CMMT Program under grant number DMR-2104255. M.S.S. acknowledges funding support from the National Science Foundation through Award No. CHEM-1800344. K.S. also received support from the BioPACIFIC Materials Innovation Platform (NSF DMR-1933487). Use was made of computational facilities purchased with funds from the National Science Foundation (OAC-1925717) and administered by the Center for Scientific Computing (CSC). The CSC is supported by the California NanoSystems Institute and the Materials Research Science and Engineering Center (MRSEC; NSF DMR-2308708) at UC Santa Barbara.

Author information

Authors and Affiliations

Authors

Contributions

MN and KS contributed to the conception, data acquisition and analysis, and writing of the manuscript. NS, SK, RG, KTD, MSS, and GHF contributed to the conception, review and editing of the manuscript, and funding acquisition.

Corresponding authors

Correspondence to M. Scott Shell or Glenn H. Fredrickson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

This article is dedicated to Fyl Pincus whose scientific achievements and mentoring in condensed and soft matter, polymers, polyelectrolytes, colloids, biological physics, and Coulombic effects have had a great impact on the research community.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 2426 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M., Shen, K., Sherck, N. et al. A molecularly informed field-theoretic study of the complexation of polycation PDADMA with mixed micelles of sodium dodecyl sulfate and ethoxylated surfactants. Eur. Phys. J. E 46, 75 (2023). https://doi.org/10.1140/epje/s10189-023-00332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00332-4

Navigation