Skip to main content
Log in

Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Flexoelectric coefficients of carbon nanotube (CNT) doped nematic liquid crystals (NLCs) are studied based on the Helfrich theory. Weak and hard anchoring conditions between the NLC molecules and CNTs are considered. The volume fraction of the CNTs in nematic host is assumed to be low, which makes nanotubes aggregation phenomena negligible. Also, the length of doped CNTs is assumed to be lower than 10μm, so these rigid rods with low concentration cannot possess any flexoelectric polarization by themselves, only their presence modifies the flexoelectric coefficients of the NLC system. The Landau-de Gennes theory is used to calculate the order parameter changes in the medium. Also, the numerical density definition is renewed in the presence of nanotubes. It is shown that in the nematic phase the flexoelectric coefficients increase along with the increase of the coupling strength and temperature. The enhancement in flexoelectric coefficients is more significant in hard anchoring conditions than in the weak anchoring case. The flexoelectric coefficients increase up to 5-fold is calculated near the phase transition temperature, which is in good accordance with the experimental reported data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Sprokel, The Physics and Chemistry of Liquid Crystal Devices (Springer Science & Business Media, 2013)

  2. D.K. Yang, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2014)

  3. T. Kato, J. Uchida, T. Ichikawa, T. Sakamoto, Angew. Chem. Int. Ed. 57, 4355 (2018)

    Article  Google Scholar 

  4. Q. Li, Nanoscience with Liquid Crystals (Springer International PU, 2016)

  5. R.K. Khan, S. Turlapati, N.V.S. Rao, S. Ghosh, Eur. Phys. J. E 40, 75 (2017)

    Article  Google Scholar 

  6. M. Emdadi, J.B. Poursamad, M. Sahrai, F. Moghaddas, Mol. Phys. 116, 1650 (2018)

    Article  ADS  Google Scholar 

  7. P. Van Der Schoot, V. Popa-Nita, S. Kralj, J. Phys. Chem. B 112, 4512 (2008)

    Article  Google Scholar 

  8. V. Popa-Nita, S. Kralj, J. Chem. Phys. 132, 024902 (2010)

    Article  ADS  Google Scholar 

  9. V. Popa-Nita, M. Cevko, S. Kralj, Liquid Crystal-Anisotropic Nanoparticles Mixtures, edited by J.M. Marulanda, Electronic Properties of Carbon Nanotubes (InTech Press, 2011) pp. 645--664

  10. V. Popa-Nita, J. Chem. Phys. 143, 094901 (2015)

    Article  ADS  Google Scholar 

  11. M. Yakemseva, I. Dierking, N. Kapernaum, N. Usoltseva, F. Giesselmann, Eur. Phys. J. E 37, 7 (2014)

    Article  Google Scholar 

  12. K.P. Sigdel, G.S. Iannacchione, Eur. Phys. J. E 34, 34 (2011)

    Article  Google Scholar 

  13. E. Petrescu, C. Cirtoaje, Beilstein J. Nanotechnol. 9, 233 (2018)

    Article  Google Scholar 

  14. W. Lee, C.Y. Wang, Y.C. Shih, Appl. Phys. Lett. 85, 513 (2004)

    Article  ADS  Google Scholar 

  15. Y.J. Lim, S.S. Bhattacharyya, W. Tie, H.R. Park, Y.H. Lee, S.H. Lee, Liq. Cryst. 40, 1202 (2013)

    Article  Google Scholar 

  16. R. Basu, G.S. Iannacchione, J. Appl. Phys. 106, 124312 (2009)

    Article  ADS  Google Scholar 

  17. O. Köysal, Synth. Met. 160, 1097 (2010)

    Article  Google Scholar 

  18. A.Y.G. Fuh, W. Lee, K.Y.C. Huang, Liq. Cryst. 40, 745 (2013)

    Article  Google Scholar 

  19. Y.T. Lai, J.C. Kuo, Y.J. Yang, Sens. Actuators A: Phys. 215, 83 (2014)

    Article  Google Scholar 

  20. Y.T. Lai, J.C. Kuo, Y.J. Yang, Appl. Phys. Lett. 102, 191912 (2013)

    Article  ADS  Google Scholar 

  21. A.G. Petrov, Y.G. Marinov, H.P. Hinov, L. Todorova, M. Dencheva-Zarkova, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, Mol. Cryst. Liq. Cryst. 545, 58/1282 (2011)

    Article  Google Scholar 

  22. H.P. Hinov, J.I. Pavlič, Y.G. Marinov, A.G. Petrov, S. Sridevi, P.M. Rafailov, U. Dettlaff-Weglikowska, in Proceedings of 16 ISCMP: Progress in Solid State and Molecular Electronics, Ionics and Photonics, 2010, J. Phys.: Conf. Ser., Vol. 253 (IOP Publishing, 2010)

  23. A. Buka, N. Éber (Editors), Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications (Imperial College Press, 2012)

  24. R.B. Meyer, Phys. Rev. Lett. 22, 918 (1969)

    Article  ADS  Google Scholar 

  25. W. Helfreich, Z. Naturforsch. A 26, 833 (1971)

    Article  ADS  Google Scholar 

  26. J. Prost, J.P. Marcerou, J. Phys. (Paris) 38, 315 (1977)

    Article  Google Scholar 

  27. M.A. Osipov, Sov. Phys. JETP 58, 1167 (1983)

    Google Scholar 

  28. A. Ferrarini, Phys. Rev. E 64, 021710 (2001)

    Article  ADS  Google Scholar 

  29. A.M. Somoza, C. Sagui, C. Roland, Phys. Rev. B 63, 081403 (2001)

    Article  ADS  Google Scholar 

  30. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys. 104, 2089 (1996)

    Article  ADS  Google Scholar 

  31. A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999)

    Article  ADS  Google Scholar 

  32. F.C. Frank, Discuss. Faraday Soc. 25, 19 (1958)

    Article  Google Scholar 

  33. S.Y. Jeon, S.H. Shin, S.J. Jeong, S.H. Lee, S.H. Jeong, Y.H. Lee, H.C. Choi, K.J. Kim, Appl. Phys. Lett. 90, 121901 (2007)

    Article  ADS  Google Scholar 

  34. S.P. Yadav, S. Singh, Prog. Mater. Sci. 80, 38 (2016)

    Article  Google Scholar 

  35. K. Schiele, S. Trimper, Phys. Status Solidi B 118, 267 (1983)

    Article  ADS  Google Scholar 

  36. D.W. Berreman, S. Meiboom, Phys. Rev. A 30, 1955 (1984)

    Article  ADS  Google Scholar 

  37. A. Poniewierski, T.J. Sluckin, Mol. Phys. 55, 1113 (1985)

    Article  ADS  Google Scholar 

  38. P.G. De Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971)

    Article  Google Scholar 

  39. H. Mori, J.E.C. Gartland, J.R. Kelly, P. Boss, Jpn. J. Appl. Phys. 38, 135 (1999)

    Article  ADS  Google Scholar 

  40. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953)

  41. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, 1988)

  42. P.G. De Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993)

  43. H. Yokoyama, H.A. Van Sprang, J. Appl. Phys. 57, 4520 (1985)

    Article  ADS  Google Scholar 

  44. H.J. Coles, Mol. Cryst. Liq. Cryst. 49, 67 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Poursamad.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadas, F., Poursamad, J.B., Sahrai, M. et al. Flexoelectric coefficients enhancement via doping carbon nanotubes in nematic liquid crystal host. Eur. Phys. J. E 42, 103 (2019). https://doi.org/10.1140/epje/i2019-11864-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11864-1

Keywords

Navigation