Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 293))

  • 1549 Accesses

Abstract

This paper aims to provide insight into the chemophysical nature of the composite of liquid crystal (LC) and carbon nanotube (CNT). A dilute colloid of CNT dispersed in a nematic was prepared for dielectric and birefringence measurements. Molecular dynamics calculations revealed that the polarizability anisotropy of CNT, which induces anisotropic dipolar moments when the composite is subjected to an electric field, plays an important role in enhancing the dielectric anisotropy of the nematic host. Based on the results, field-activated LC materials containing tiny amounts of CNT are expectable for potential applications in LC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, W., & Chiu, C.-S. (2001). Optics Letters, 26, 521.

    Article  Google Scholar 

  2. Lee, W., & Yeh, S.-L. (2001). Applied Physics Letters, 79, 4488.

    Article  Google Scholar 

  3. Lynch, M. D., & Patrick, D. L. (2002). Nano Letters, 2, 1197.

    Article  Google Scholar 

  4. Dierking, I., Scalia, G., & Morales, P. (2005). Journal of Applied Physics, 97, 044309.

    Article  Google Scholar 

  5. Lee, W., Wang, C.-Y., & Shih, Y.-C. (2004). Applied Physics Letters, 85, 513.

    Article  Google Scholar 

  6. Baik, I. S., Jeon, S. Y., Lee, S. H., Park, K. A., Jeong, S. H., An, K. H., et al. (2005). Applied Physics Letters, 87, 263110.

    Article  Google Scholar 

  7. Huang, C.-Y., Pan, H.-C., & Hsieh, C.-T. (2006). Japanese Journal of Applied Physics, 45, 6392.

    Article  Google Scholar 

  8. Park, K. A., Lee, S. M., Lee, S. H., & Lee, Y. H. (2007). Journal of Physical Chemistry C, 111, 1620.

    Article  Google Scholar 

  9. Basu, R., & Iannacchione, G. S. (2010). Physical Review E, 81, 051705.

    Article  Google Scholar 

  10. Basu, R., & Iannacchione, G. (2008). Applied Physics Letters, 93, 183105.

    Article  Google Scholar 

  11. Clark, M. G., Raynes, E. P., Smith, R. A., & Tough, R. J. A. (1980). Journal of Physics D, 13, 2151.

    Article  Google Scholar 

  12. Welford, K. R., & Sambles, J. R. (1987). Molecular Crystals and Liquid Crystals, 147, 25.

    Article  Google Scholar 

  13. LCAS 1 is a commercially available system configured in accordance with Refs. 13 and 14 for liquid crystal parameter measurements.

    Google Scholar 

  14. Maier, W., & Meier, G. (1961). Zeitschrift Für Naturforschung, 16, 262.

    Article  Google Scholar 

  15. M. F. Vuks, Optika I Spektroskopiya, 60, 644 (1966).

    Google Scholar 

  16. Materials Studio is a registered program from AccelrysTM Inc.

    Google Scholar 

  17. Dawid, A., & Gburski, Z. (2007). The Journal of Non-Crystalline Solids, 353, 4339.

    Article  Google Scholar 

  18. So far includes: (10, 0) and (5, 4) SWCNTs and (15, 15) and (21, 0) (in terms of the outermost wall) MWCNTs.

    Google Scholar 

  19. Benedict, L. X., Louie, S. G., & Cohen, M. L. (1995). Physical Review B, 52, 8541.

    Article  Google Scholar 

  20. Lee, C.-W., & Shih, W.-P. (2010). Materials Letters, 64, 466.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Council of Taiwan (Grant No. NSC 98-2112-M-006-001-MY3). The authors acknowledge Professors T.-Y. Chen and C.-Y. Chen and Drs. W,-Y. Wu and M. Wand for experimental assistance and H.-Y. Lee and Dr. K.-T. Cheng for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Yu-Chia Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fuh, A.YG., Lee, W., Huang, K.YC. (2014). Liquid-Crystal–Carbon-Nanotube Composite: A Chemophysical Point of View. In: Juang, J., Chen, CY., Yang, CF. (eds) Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems (ICITES2013). Lecture Notes in Electrical Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-319-04573-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04573-3_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04572-6

  • Online ISBN: 978-3-319-04573-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics