Skip to main content
Log in

Bagnold velocity profile for steady-state dense granular chute flow with base slip

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The three-halves Bagnold profile for granular flow down an incline, assuming no-slip at the base, is a generally accepted velocity profile that applies in many instances. In the intermediate dense regime, the material behaviour resembles a Bingham fluid and the widely accepted friction model - μ(I) rheology originally defined within the realms of visco-plasticity applies. Here for steady-state dense granular flow, we derive a generalization of the Bagnold profile which applies to the above- mentioned inter-particle friction approach, for which the Navier slip boundary condition applies at the base, and the Bagnold profile is included as a special case. We extend the Bagnold profile for a Navier slip base and we provide an expression for the slip length which demonstrates the dependence on the fundamental physical constants appearing in the μ(I) framework. The given velocity profile provides a simple formula that captures the major flow characteristics of dense granular chute flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreotti B, Daerr A, Douady S (2002) Scaling laws in granular flows down a rough plane. Phys Fluids 14(1):415–418

    Article  CAS  Google Scholar 

  • Andreotti B, Forterre Y, Pouliquen O (2013) Granular media: between fluid and solid. Cambridge University Press

  • Aranson IS, Tsimring LS (2001) Continuum description of avalanches in granular media. Phys Rev E 64(2):020301

  • Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: Theoretical concepts. Rev Mod Phys 78(2):641

    Article  CAS  Google Scholar 

  • Artoni R, Santomaso AC, Go M, Canu P (2012) Scaling laws for the slip velocity in dense granular flows. Phys Rev Lett 108(23):238002

  • Azanza E, Chevoir F, Moucheront P (1999) Experimental study of collisional granular flows down an inclined plane. J Fluid Mech 400:199–227

    Article  Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc R Soc Lond Ser A Math Phys Sci 225(1160):49–63

    Google Scholar 

  • Barker T, Schaeffer DG, Bohórquez P, Gray JMNT (2015) Well-posed and ill-posed behaviour of the-rheology for granular flow. J Fluid Mech 779:794–818

    Article  CAS  Google Scholar 

  • Barker T, Gray JMNT (2017) Partial regularisation of the incompressible μ(i)-rheology for granular flow. J Fluid Mech 828:5–32

    Article  CAS  Google Scholar 

  • Bocquet L, Losert W, Schalk D, Lubensky TC, Gollub JP (2001) Granular shear flow dynamics and forces: Experiment and continuum theory. Phys Rev E 65(1):011307

  • Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38(11):1–15

    Article  CAS  Google Scholar 

  • Boyer F, Guazzelli E, Pouliquen O (2011) Unifying suspension and granular rheology. Phys Rev Lett 107(18):188301

  • Campbell CS (1990) Rapid granular flows. Ann Rev Fluid Mech 22(1):57–90

    Article  Google Scholar 

  • Casado-Dıaz J, Fernández-Cara E, Simon J (2003) Why viscous fluids adhere to rugose walls:: a mathematical explanation. J Differ Equ 189(2):526–537

    Article  Google Scholar 

  • Chambon R, Desrues J, Hammad W, Charlier R (1994) Cloe, a new rate-type constitutive model for geomaterials theoretical basis and implementation. Int J Numer Anal Methods Geomech 18(4):253–278

    Article  Google Scholar 

  • Chambon G, Bouvarel R, Laigle D, Naaim M (2011) Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J Non-Newtonian Fluid Mech 166(12-13):698–712

    Article  CAS  Google Scholar 

  • Cox BJ, Hill JM (2011) Flow through a circular tube with a permeable navier slip boundary. Nanoscale Res Lett 6(1):1–9

    Article  Google Scholar 

  • Delannay R, Louge M, Richard P, Taberlet N, Valance A (2007) Towards a theoretical picture of dense granular flows down inclines. Nat Mater 6(2):99–108

    Article  CAS  Google Scholar 

  • Ertaş D, Halsey TC (2002) Granular gravitational collapse and chute flow. EPL (EuroPhys Lett) 60(6):931

    Article  Google Scholar 

  • Fang C, Wu W (2014a) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part i. equilibrium turbulent closure models. Acta Geotech 9(5):725–737

    Article  Google Scholar 

  • Fang C, Wu W (2014b) On the weak turbulent motions of an isothermal dry granular dense flow with incompressible grains: Part ii. complete closure models and numerical simulations. Acta Geotech 9 (5):739–752

    Article  Google Scholar 

  • Fernández N, Enrique D, Garres-díaz J, Mangeney A, Narbona-Reina G (2018) 2d granular flows with the μ (i) rheology and side walls friction: a well-balanced multilayer discretization. J Comput Phys 356:192–219

    Article  Google Scholar 

  • Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24

    Article  Google Scholar 

  • GDR-MiDi (2004) On dense granular flows. Eur Phys J E 14:341–365

    Article  Google Scholar 

  • Goldhirsch I (2003) Rapid granular flows. Ann Rev Fluid Mech 35(1):267–293

    Article  Google Scholar 

  • Guo X, Peng C, Wu W, Wang Y (2016) A hypoplastic constitutive model for debris materials. Acta Geotech 11(6):1217–1229

    Article  Google Scholar 

  • Hill JM (1992) Differential equations and group methods for scientists and engineers. CRC Press

  • Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68(4):1259

    Article  Google Scholar 

  • Jiménez B S, Vernescu B (2017) Derivation of the navier slip and slip length for viscous flows over a rough boundary. Phys Fluids 29(5):057103

  • Jop P, Forterre Y, Pouliquen O (2005) Crucial role of sidewalls in granular surface flows: consequences for the rheology. J Fluid Mech 541:167–192

    Article  Google Scholar 

  • Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  CAS  Google Scholar 

  • Josserand C, Lagrée P-Y, Lhuillier D (2004) Stationary shear flows of dense granular materials: a tentative continuum modelling. Eur Phys J E 14(2):127–135

    Article  CAS  Google Scholar 

  • Kamrin K (2019) Non-locality in granular flow: Phenomenology and modeling approaches. Front Phys 7:116

    Article  Google Scholar 

  • Kumaran V (2004) Constitutive relations and linear stability of a sheared granular flow. J Fluid Mech 506:1–43

    Article  CAS  Google Scholar 

  • Lauga E, Brenner M, Stone H (2007) Microfluidics: The No-Slip Boundary Condition. Springer, Berlin, pp 1219–1240

    Google Scholar 

  • Lemaitre A (2002) Origin of a repose angle: kinetics of rearrangement for granular materials. Phys Rev Lett 89(6):064303

  • Louge M Y, Valance A, Lancelot P, Delannay R, Artieres O (2015) Granular flows on a dissipative base. Phys Rev E 92(2):022204

  • Maali A, Colin S, Bhushan B (2016) Slip length measurement of gas flow. Nanotechnology 27(37):374004

  • Martin N, Ionescu IR, Mangeney A, Bouchut F, Farin M (2017) Continuum viscoplastic simulation of a granular column collapse on large slopes: μ (i) rheology and lateral wall effects. Phys Fluids 29(1):013301

  • Matthews MT, Hill JM (2008) A note on the boundary layer equations with linear slip boundary condition. Appl Math Lett 21(8):810–813

    Article  Google Scholar 

  • Mills P, Loggia D, Tixier M (1999) Model for a stationary dense granular flow along an inclined wall. EPL (EuroPhys Lett) 45(6):733

    Article  CAS  Google Scholar 

  • Mohan LS, Rao KK, Nott PR (2002) A frictional cosserat model for the slow shearing of granular materials. J Fluid Mech 457:377– 409

    Article  CAS  Google Scholar 

  • Mroz Z, Norris VA, Zienkiewicz OC (1979) Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Geotechnique 29(1):1–34

    Article  Google Scholar 

  • MuirWood D (2007) The magic of sands—the 20th bjerrum lecture presented in oslo, 25 november 2005. Can Geotech J 44(11):1329–1350

    Google Scholar 

  • Nedderman RM (2005) Statics and kinematics of granular materials. Cambridge University Press

  • Ness C, Sun J (2015) Flow regime transitions in dense non-brownian suspensions: Rheology, microstructural characterization, and constitutive modeling. Phys Rev E 91(1):012201

  • Pähtz T, Durán O, De Klerk DN, Govender I, Trulsson M (2019) Local rheology relation with variable yield stress ratio across dry, wet, dense, and dilute granular flows. Phys Rev Lett 123(4): 048001

  • Parez S, Aharonov E, Toussaint R (2016) Unsteady granular flows down an inclined plane. Phys Rev E 93(4):042902

  • Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotech 11(6):1231–1247

    Article  Google Scholar 

  • Pouliquen O, Forterre Y, Le Dizes S (2001) Slow dense granular flows as a self-induced process. Adv Compl Syst 4(04):441–450

    Article  Google Scholar 

  • Pouliquen O, Forterre Y (2009) A non-local rheology for dense granular flows. Philos Trans R Soc A Math Phys Eng Sci 367(1909):5091–5107

    Article  Google Scholar 

  • Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11 (3):542–548

    Article  CAS  Google Scholar 

  • Radjai F, Roux JN, Daouadji A (2017) Modeling granular materials: century-long research across scales. J Eng Mech 143(4):04017002

  • Rauter M, Barker T, Fellin W (2020) Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput Geotech 122:103492

    Article  Google Scholar 

  • Roux JN, Combe G (2002) Quasistatic rheology and the origins of strain. Comptes Rendus Phys 3(2):131–140

    Article  CAS  Google Scholar 

  • Roy S, Luding S, Weinhart T (2017) A general(ized) local rheology for wet granular materials. J Phys 19(4):043014

  • Savage SB (1983) Granular flows down rough inclines-review and extension. Stud Appl Mech 7:261–282

    Article  Google Scholar 

  • Savage SB (1998) Analyses of slow high-concentration flows of granular materials. J Fluid Mech 377:1–26

    Article  CAS  Google Scholar 

  • Silbert L E, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys Rev E 64(5):051302

  • Silbert LE, Landry JW, Grest GS (2003) Granular flow down a rough inclined plane: transition between thin and thick piles. Phys Fluids 15(1):1–10

    Article  CAS  Google Scholar 

  • Tamagnini C, Viggiani G, Chambon R, Desrues J (2000) Evaluation of different strategies for the integration of hypoplastic constitutive equations Application to the cloe model. Mech Cohesive-frictional Mater Int J Exper Modell Comput Mater Struct 5(4):263–289

    Google Scholar 

  • Zheng XM, Hill JM (1996) Molecular dynamics modelling of granular chute flow: density and velocity profiles. Powder Technol 86(2):219–227

    Article  CAS  Google Scholar 

  • Zhu H, Mehrabadi MM, Massoudi M (2007) The frictional flow of a dense granular material based on the dilatant double shearing model. Comput Math Appl 53(2):244–259

    Article  Google Scholar 

Download references

Acknowledgements

JMH gratefully acknowledges the hospitality and the financial support provided by the Institute of Geotechnical Engineering, University of Natural Resources and Life Sciences, Vienna, during which time this work was initiated. DB wishes to acknowledge the financial support provided by a grant from the Otto Pregl Foundation for Fundamental Geotechnical Research in Vienna, Austria and the logistical support provided by the Indian Institute of Technology Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debayan Bhattacharya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Author contribution

All authors contributed equally to all aspects of the writing and preparation of this paper

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, J.M., Bhattacharya, D. & Wu, W. Bagnold velocity profile for steady-state dense granular chute flow with base slip. Rheol Acta 61, 207–214 (2022). https://doi.org/10.1007/s00397-021-01308-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-021-01308-x

Keywords

Navigation