Skip to main content
Log in

Generalized linear stability of non-inertial rimming flow in a rotating horizontal cylinder

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The stability of a thin film of viscous liquid inside a horizontally rotating cylinder is studied using modal and non-modal analysis. The equation governing the film thickness is derived within lubrication approximation and up to first order in aspect ratio (average film thickness to radius of the cylinder). Effect of gravity, viscous stress and capillary pressure are considered in the model. Steady base profiles are computed in the parameter space of interest that are uniform in the axial direction. A linear stability analysis is performed on these base profiles to study their stability to axial perturbations. The destabilizing behavior of aspect ratio and surface tension is demonstrated which is attributed to capillary instability. The transient growth that gives maximum amplification of any initial disturbance and the pseudospectra of the stability operator are computed. These computations reveal weak effect of non-normality of the operator and the results of eigenvalue analysis are recovered after a brief transient period. Results from nonlinear simulations are also presented which also confirm the validity of the modal analysis for the flow considered in this study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.T. Thoroddsen, L. Mahadevan, Exp. Fluids 23, 1 (1997).

    Article  Google Scholar 

  2. C. Tougher, S. Wilson, B. Duffy, Appl. Math. Lett. 22, 882 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  3. K. Pougatch, I. Frigaard, Phys. Fluids 23, 022102 (2011).

    Article  ADS  Google Scholar 

  4. E.S. Benilov, V.N. Lapin, J. Fluid Mech. 736, 107 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  5. C.-S. Yih, J.F.C. Kingman, Proc. Roy. Soc. A 258, 63 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. O.M. Phillips, J. Fluid Mech. 7, 340 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. T.J. Pedley, J. Fluid Mech. 30, 127 (1967).

    Article  MATH  ADS  Google Scholar 

  8. K.J. Ruschak, L.E. Scriven, J. Fluid Mech. 76, 113 (1976).

    Article  MATH  ADS  Google Scholar 

  9. H.K. Moffatt, J. Mec. 16, 651 (1977).

    ADS  Google Scholar 

  10. J. Ashmore, A.E. Hosoi, H.A. Stone, J. Fluid Mech. 479, 65 (2003).

    Article  MATH  ADS  Google Scholar 

  11. E.S. Benilov, M.S. Benilov, N. Kopteva, J. Fluid Mech. 597, 91 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C.M. Groh, M.A. Kelamanson, Phys. Fluids 21, 091702 (2009).

    Article  ADS  Google Scholar 

  13. E.S. Benilov, S.G.B. O’Brien, Phys. Fluids 17, 052106 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  14. J.M. Davis, S.M. Troian, Phys. Fluids 15, 1344 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Tiwari, J.M. Davis, Phys. Fluids 21, 102101 (2009).

    Article  ADS  Google Scholar 

  16. L. Landau, B. Levich, Acta Physicochim. URSS 17, 42 (1942).

    Google Scholar 

  17. S.B.G. O’Brien, E.G. Gath, Phys. Fluids 10, 1040 (1998).

    Article  ADS  Google Scholar 

  18. E.S. Benilov, M.S. Benilov, S.G.B. O’Brien, J. Eng. Math. 63, 197 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  19. E.S. Benilov, V.N. Lapin, S.G.B. O’Brien, J. Eng. Math. 75, 49 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  20. G.A. Leslie, S.K. Wilson, B.R. Duffy, Q. J. Mech. Appl. Math. 65, 483 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  21. J.M. Davis, S.M. Troian, Phys. Fluids 17, 0721031 (2005).

    MathSciNet  Google Scholar 

  22. L. Preziosi, D.D. Joseph, J. Fluid Mech. 187, 99 (1988).

    Article  MATH  ADS  Google Scholar 

  23. B. Jin, A. Acrivos, A. Munch, Phys. Fluids 17, 103603 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  24. J.M. Davis, B.J. Fischer, S.M. Troian, A General Approach to the Linear Stability of Thin Spreading Films, 2nd edition (Springer-Verlag, Heidelberg, New York, 2003).

  25. J.M. Davis, S.M. Troian, Phys. Rev. E 67, 0163081 (2003).

    Article  Google Scholar 

  26. J.M. Davis, S.M. Troian, Phys. Rev. E 70, 0463091 (2004).

    Google Scholar 

  27. B.F. Farrell, P.J. Ioannou, J. Atmos. Sci. 53, 2025 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  28. P.J. Schmidt, Annu. Rev. Fluid Mech. 39, 129 (2007).

    Article  ADS  Google Scholar 

  29. T.G. Wright, L.N. Trefethen, SIAM J. Sci. Comput. 23, 591 (2001).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, H., Tiwari, N. Generalized linear stability of non-inertial rimming flow in a rotating horizontal cylinder. Eur. Phys. J. E 38, 111 (2015). https://doi.org/10.1140/epje/i2015-15111-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15111-7

Keywords

Navigation