Skip to main content
Log in

Linear stability analysis of compressible vortex flows considering viscous effects

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the stability of compressible swirling wake flows including the viscous effects using linear stability theory. A spatial stability analysis is performed to evaluate the influence of the axial velocity deficit and circulation as well as the Reynolds number and Mach number as the main parameters that affect the instability. The growth rates of the unstable modes at several azimuthal wavenumbers are compared. The maximum growth rates and their dependency with respect to each parameter are analyzed. It is confirmed that the instability monotonically increases as the axial velocity deficit increases. For small axial velocity deficit, characteristics that are different from the results reported using inviscid analysis are identified and analyzed. Additionally, a decrease in instability is observed as the viscous and compressibility effects become stronger. In terms of circulation, it is confirmed that there is a certain region of circulation that exhibits maximum instability. The stability analysis is expected to serve as a part of a useful methodology for preliminary design and parametric study for engineering problems such as vortex generators in high-speed flows, owing to both efficiency and accuracy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Choudhari, M.M., Li, F., Paredes, P.: Effect of distributed patch of smooth roughness elements on transition in a high-speed boundary layer. In: 2018 Fluid Dynamics Conference, p. 3532 (2018)

  2. Sun, Z.: Micro vortex generators for boundary layer control: principles and applications. Int. J. Flow Control. 7(1–2), 67–86 (2015)

    Article  Google Scholar 

  3. Paredes, P., Choudhari, M.M., Li, F.: Transition delay via vortex generators in a hypersonic boundary layer at flight conditions. In: 2018 Fluid Dynamics Conference, p. 3217 (2018)

  4. Batchelor, G.K.: Axial flow in trailing line vortices. J. Fluid Mech. 20(4), 645–658 (1964)

    Article  MathSciNet  Google Scholar 

  5. Lessen, M., Singh, P.J., Paillet, F.: The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63(4), 753–763 (1974)

  6. Lessen, M., Paillet, F.: The stability of a trailing line vortex. Part 2. Viscous theory. J. Fluid Mech. 65(4), 769–779 (1974)

    Article  Google Scholar 

  7. Duck, P.W., Foster, M.R.: The inviscid stability of a trailing line vortex. ZAMP 31(4), 524–532 (1980)

    MATH  Google Scholar 

  8. Duck, P.W., Khorrami, M.R.: A note on the effects of viscosity on the stability of a trailing-line vortex. J. Fluid Mech. 245, 175–189 (1992)

    Article  MathSciNet  Google Scholar 

  9. Stott, J.A., Duck, P.W.: The stability of a trailing-line vortex in compressible flow. J. Fluid Mech. 269, 323–351 (1994)

    Article  MathSciNet  Google Scholar 

  10. Khorrami, M.R.: Stability of a compressible axisymmetric swirling jet. AIAA J. 33(4), 650–658 (1995)

    Article  Google Scholar 

  11. Lu, G., Lele, S.K.: Inviscid instability of compressible swirling mixing layers. Phys. Fluids 11(2), 450–461 (1999)

    Article  MathSciNet  Google Scholar 

  12. Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids. 12(5), 1062–1072 (2000)

    Article  MathSciNet  Google Scholar 

  13. Parras, L., Fernandez-Feria, R.: Spatial stability and the onset of absolute instability of Batchelor’s vortex for high swirl numbers. J. Fluid Mech. 583, 27–43 (2007)

    Article  MathSciNet  Google Scholar 

  14. Hiejima, T.: Linear stability analysis on supersonic streamwise vortices. Phys. Fluids. 25(11), 114103 (2013)

    Article  Google Scholar 

  15. Hiejima, T.: Spatial evolution of supersonic streamwise vortices. Phys. Fluids 26, 074102 (2014)

    Article  Google Scholar 

  16. Hiejima, T.: Onset conditions for vortex breakdown in supersonic flows. J. Fluid Mech. 840 (2018)

  17. Viola, F., Arratia, C., Gallaire, F.: Mode selection in trailing vortices: harmonic response of the non-parallel Batchelor vortex. J. Fluid Mech. 790, 523–552 (2016)

    Article  MathSciNet  Google Scholar 

  18. Heaton, C.J., Nichols, J.W., Schmid, P.J.: Global linear stability of the non-parallel Batchelor vortex. J. Fluid Mech. 629, 139–160 (2009)

    Article  MathSciNet  Google Scholar 

  19. Montero, I.P., Pinna, F.: BiGlobal stability analysis of the wake behind an isolated roughness element in hypersonic flow. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 234(1), 5–19 (2020)

    Article  Google Scholar 

  20. Li, Q., Liu, C.: Numerical investigations on the effects of the declining angle of the trailing-edge of MVG. AIAA paper, p. 714 (2010)

  21. Mayer, E.W., Powell, K.G.: Similarity solutions for viscous vortex cores. J. Fluid Mech. 238, 487–507 (1992)

    Article  MathSciNet  Google Scholar 

  22. Cattafesta, III, L., Settles, G.: Experiments on shock/vortex interactions. In: 30th Aerospace Sciences Meeting and Exhibit (1992)

  23. Kalkhoran, I.M., Smart, M.K., Wang, F.Y.: Supersonic vortex breakdown during vortex/cylinder interaction. J. Fluid Mech. 369, 351–380 (1998)

    Article  MathSciNet  Google Scholar 

  24. Smart, M.K., Kalkhoran, I.M., Benston, J.: Measurements of supersonic wing tip vortices. AIAA J. 33(10), 1761–1768 (1995)

    Article  Google Scholar 

  25. Abid, M.: Nonlinear mode selection in a model of trailing line vortices. J. Fluid Mech. 605, 19–45 (2008)

    Article  MathSciNet  Google Scholar 

  26. Reed, H.L., Saric, W.S., Arnal, D.: Linear stability theory applied to boundary layers. Ann. Rev. Fluid Mech. 28, 389–428 (1996)

    Article  MathSciNet  Google Scholar 

  27. Park, D., Park, S.O.: Influence of two-dimensional smooth humps on linear and non-linear instability of a supersonic boundary layer. Comput. Fluids 79, 140–149 (2013)

    Article  MathSciNet  Google Scholar 

  28. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Springer, Berlin (2016)

    MATH  Google Scholar 

  29. Müller, S.B., Kleiser, L.: Viscous and inviscid spatial stability analysis of compressible swirling mixing layer. Phys. Fluids 20, 114103 (2008)

    Article  Google Scholar 

  30. Mayer, E.W., Powell, K.G.: Viscous and inviscid instabilities of a trailing vortex. J. Fluid Mech. 245, 91–114 (1992)

    Article  Google Scholar 

  31. Olendraru, C., Sellier, A.: Viscous effects in the absolute-convective instability of the Batchelor vortex. J. Fluid Mech. 459, 371–396 (2002)

    Article  MathSciNet  Google Scholar 

  32. Batchelor, G.K., Gill, A.E.: Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14(4), 529–551 (1962)

    Article  MathSciNet  Google Scholar 

  33. www.netlib.org/eispack/index.html

  34. Malik, M., Orszag, S.: Efficient computation of the stability of three-dimensional compressible boundary layers. In: 14th Fluid and Plasma Dynamics Conference, p. 1277 (1981)

  35. Lee, H.J., Oh, S.J., Park, D.H.: Development of linear stability analysis method of compressible vortex flow reflecting viscous effects. J. Comput. Fluids Eng. 25(3), 23–33 (2020)

    Article  Google Scholar 

  36. Leibovich, S., Stewartson, K.: A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335–356 (1983)

    Article  MathSciNet  Google Scholar 

  37. Hiejima, T.: Streamwise vortex breakdown in supersonic flows. Phys. Fluids 29(5), 054102 (2017)

    Article  Google Scholar 

  38. Mack, L.M.: Boundary-layer linear stability theory. AGARD Report No. 709 (1984)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea with funding from the government (Ministry of Science and ICT) (2018R1A4A1024191). This work was also supported by the National Research Foundation of Korea with funding from the government (Ministry of Science and ICT) (NRF-2020R1C1C1013185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghun Park.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest with regard to the publication of this paper.

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Matrix elements of linear disturbance equations

The elements of coefficients matrices of linear disturbances equation (using \(l_{j} =j+\frac{\lambda }{\mu })\)

$$\begin{aligned}&\Gamma _{11} =\frac{\gamma M^{2}}{{{\overline{T}}} }\,\,\,\,\,\,\,\,\,\Gamma _{15} =-\frac{\bar{{\rho }}}{\bar{{T}}}\,\,\,\,\,\,\,\,\,\Gamma _{22} ={\overline{\rho }} \,\,\,\,\,\,\,\,\,\Gamma _{33} ={\overline{\rho }} \,\,\,\,\,\,\,\,\,\Gamma _{44} ={\overline{\rho }} \,\,\,\,\,\,\,\,\,\Gamma _{51} =-\left( {\gamma -1} \right) M^{2}\,\,\,\,\,\,\,\,\,\Gamma _{55} ={\overline{\rho }} \\&A_{11} =\frac{\gamma M^{2}}{{{\overline{T}}} }U\,\,\,\,\,\,\,\,\,A_{12} ={\overline{\rho }} \,\,\,\,\,\,\,\,\,A_{15} =-\frac{\bar{{\rho }}}{\bar{{T}}}U \\&A_{21} =1\,\,\,\,\,\,\,\,\,A_{22} ={\overline{\rho }} U\,\,\,\,\,\,\,\,\,A_{23} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial \bar{{T}}}{\partial r}-\frac{l_{1} }{Re}\frac{1}{r}{\overline{\mu }} \,\\&A_{32} =-\frac{l_{0} }{Re}\frac{\partial \mu }{\partial T}\frac{\partial {{\overline{T}}} }{\partial r}\,\,\,\,\,\,\,\,\,A_{33} ={\overline{\rho }} U\,\,\,\,\,\,\,\,\,A_{35} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial U}{\partial r}\\&A_{44} ={\overline{\rho }} U\\&A_{51} =-\left( {\gamma -1} \right) M^{2}U\,\,\,\,\,\,\,\,\,A_{53} =-\frac{2{\overline{\mu }} }{Re}\left( {\gamma -1} \right) M^{2}\frac{\partial U}{\partial r}\,\,\,\,\,\,\,\,\,A_{55} ={\overline{\rho }} U\\&B_{13} ={\overline{\rho }}\\&B_{22} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial \bar{{T}}}{\partial r}-\frac{{\overline{\mu }} }{R_{0} }\frac{1}{r}\,\,\,\,\,\,\,\,\,B_{25} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial U}{\partial r}\\&B_{31} =1\,\,\,\,\,\,\,\,\,B_{33} =-\frac{l_{2} }{Re}\frac{\partial \mu }{\partial T}\frac{\partial {{\overline{T}}} }{\partial r}-\frac{{\overline{\mu }} l_{2} }{Re}\frac{1}{r}\\&B_{44} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial \bar{{T}}}{\partial r}-\frac{{\overline{\mu }} }{R_{0} }\frac{1}{r}\,\,\,\,\,\,\,\,\,B_{45} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\left( {\frac{\partial V_{\theta } }{\partial r}-\frac{V_{\theta } }{r}} \right) \\&B_{52} =-\frac{2{\overline{\mu }} }{Re}\left( {\gamma -1} \right) M^{2}\frac{\partial U}{\partial r}\,\,\,\,\,\,\,\,\,B_{54} =-\frac{2{\overline{\mu }} }{Re}\left( {\gamma -1} \right) M^{2}\left( {\frac{\partial V_{\theta } }{\partial r}-\frac{V_{\theta } }{r}} \right) \,\,\,\,\,\,\,\,\,B_{55} =-\frac{2}{\Pr Re}\frac{\partial k}{\partial T}\frac{\partial \bar{{T}}}{\partial r}-\frac{{{\overline{k}}} }{\Pr Re}\frac{1}{r}\\&C_{11} =\frac{\gamma M^{2}}{{{\overline{T}}} }V_{\theta } \frac{1}{r}\,\,\,\,\,\,\,\,\,C_{14} ={\overline{\rho }} \frac{1}{r}\,\,\,\,\,\,\,\,\,C_{15} =-\frac{\bar{{\rho }}}{\bar{{T}}}V_{\theta } \frac{1}{r}\\&C_{22} ={\overline{\rho }} V_{\theta } \frac{1}{r}\,\,\,\,\\&C_{33} ={\overline{\rho }} V_{\theta } \frac{1}{r}\,\,\,\,\,\,\,\,\,C_{34} =-\frac{l_{0} }{Re}\frac{\partial \mu }{\partial T}\frac{\partial \overline{T} }{\partial r}\frac{1}{r}+\frac{{\overline{\mu }} l_{3} }{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,\,C_{35} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\left( {\frac{\partial V_{\theta } }{\partial r}-\frac{V_{\theta } }{r}} \right) \frac{1}{r}\\&C_{41} =\frac{1}{r}\,\,\,\,\,\,\,\,\,C_{43} =-\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial \bar{{T}}}{\partial r}\frac{1}{r}-\frac{{\overline{\mu }} l_{3} }{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,\,C_{44} ={\overline{\rho }} V_{\theta } \frac{1}{r}\,\,\,\,\\&C_{51} =-\left( {\gamma -1} \right) MV_{\theta } \frac{1}{r}\,\,\,\,\,\,\,\,\,C_{53} =-\frac{2{\overline{\mu }} }{Re}\left( {\gamma -1} \right) M^{2}\left( {\frac{\partial V_{\theta } }{\partial r}\frac{1}{r}-\frac{V_{\theta } }{r^{2}}} \right) \,\,\,\,\,\,\,\,\,C_{55} ={\overline{\rho }} V_{\theta } \frac{1}{r}\\&D_{13} =\frac{\partial {\overline{\rho }} }{\partial r}+\frac{{\overline{\rho }} }{r}\\&D_{23} ={\overline{\rho }} \frac{\partial U}{\partial r}\,\,\,\,\,\,\,\,\,D_{25} =-\frac{1}{Re}\frac{\partial ^{2}\mu }{\partial T^{2}}\frac{\partial \bar{{T}}}{\partial r}\frac{\partial U}{\partial r}-\frac{1}{Re}\frac{\partial \mu }{\partial T}\left( {\frac{\partial ^{2}U}{\partial r^{2}}+\frac{1}{r}\frac{\partial U}{\partial r}} \right) \\&D_{31} =-\frac{\gamma M^{2}}{{{\overline{T}}} }\frac{V_{\theta } ^{2}}{r}\,\,\,\,\,\,\,\,\,D_{33} =-\frac{l_{0} }{Re}\frac{\partial \mu }{\partial T}\frac{\partial {{\overline{T}}} }{\partial r}\frac{1}{r}+\frac{{\overline{\mu }} l_{2} }{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,\,D_{34} =-2{\overline{\rho }} \frac{V_{\theta } }{r}\,\,\,\,\,\,\,\,\,D_{35} =\frac{\bar{{\rho }}}{\bar{{T}}}\frac{V_{\theta }^{2}}{r}\\&D_{43} ={\overline{\rho }} \frac{\partial V_{\theta } }{\partial r}+\overline{\rho }\frac{V_{\theta } }{r}\,\,\,\,\,\,\,\,\,\,D_{44} =\frac{1}{Re}\frac{\partial \mu }{\partial T}\frac{\partial \bar{{T}}}{\partial r}\frac{1}{r}+\frac{{\overline{\mu }} }{R_{0} }\frac{1}{r^{2}}\\&D_{45} =-\frac{1}{Re}\frac{\partial ^{2}\mu }{\partial T^{2}}\frac{\partial \bar{{T}}}{\partial r}\left( {\frac{\partial V_{\theta } }{\partial r}-\frac{V_{\theta } }{r}} \right) -\frac{1}{Re}\frac{\partial \mu }{\partial T}\left( {\frac{\partial ^{2}V_{\theta } }{\partial r^{2}}+\frac{1}{r}\frac{\partial V_{\theta } }{\partial r}-\frac{V_{\theta } }{r^{2}}} \right) \\&D_{53} ={\overline{\rho }} \frac{\partial {{\overline{T}}} }{\partial r}-\left( {\gamma -1} \right) M^{2}\frac{\partial {{\overline{p}}} }{\partial r}\,\,\,\,\,\,\,\,\,D_{54} =-\frac{2{\overline{\mu }} }{Re}\left( {\gamma -1} \right) M^{2}\left( {\frac{V_{\theta } }{r^{2}}-\frac{\partial V_{\theta } }{\partial r}\frac{1}{r}} \right) \\&D_{55} =-\frac{1}{\Pr }\frac{1}{Re}\left\{ {\frac{\partial ^{2}k}{\partial T^{2}}\left( {\frac{\partial \bar{{T}}}{\partial r}} \right) ^{2}+\frac{\partial k}{\partial T}\left( {\frac{\partial ^{2}{{\overline{T}}} }{\partial r^{2}}+\frac{\partial {{\overline{T}}} }{\partial r}\frac{1}{r}} \right) } \right\} \\&\qquad \quad \quad -\frac{1}{Re}\left( {\gamma -1} \right) M^{2}\frac{\partial \mu }{\partial T}\left\{ {\left( {\frac{\partial U}{\partial r}} \right) ^{2}+\left( {\frac{\partial V_{\theta } }{\partial r}} \right) ^{2}+\left( {\frac{V_{\theta } }{r}} \right) ^{2}-2\frac{\partial V_{\theta } }{\partial r}\frac{V_{\theta } }{r}} \right\} \\&V_{xx,22} =\frac{{\overline{\mu }} l_{2} }{Re}\,\,\,\,\,\,\,\,\,V_{xx,33} =\frac{{\overline{\mu }} }{Re}\,\,\,\,\,\,\,\,\,V_{xx,44} =\frac{{\overline{\mu }} }{Re}\,\,\,\,\,\,\,\,\,V_{xx,55} =\frac{{{\overline{k}}} }{\Pr Re} \\&V_{rr,22} =\frac{{\overline{\mu }} }{Re}\,\,\,\,\,\,\,\,\,V_{rr,33} =\frac{{\overline{\mu }} l_{2} }{Re}\,\,\,\,\,\,\,\,\,V_{rr,44} =\frac{\overline{\mu }}{Re}\,\,\,\,\,\,\,\,\,V_{rr,55} =\frac{{{\overline{k}}} }{\Pr Re}\\&V_{\theta \theta ,22} =\frac{{\overline{\mu }} }{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,V_{\theta \theta ,33} =\frac{\overline{\mu }}{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,\,V_{\theta \theta ,44} =\frac{{\overline{\mu }} l_{2} }{Re}\frac{1}{r^{2}}\,\,\,\,\,\,\,\,\,V_{\theta \theta ,55} =\frac{{{\overline{k}}} }{\Pr Re}\frac{1}{r^{2}}\\&V_{xr,23} =\frac{{\overline{\mu }} l_{1} }{Re}\,\,\,\,\,\,\,\,\,V_{xr,32} =\frac{{\overline{\mu }} l_{1} }{Re}\\&V_{x\theta ,24} =\frac{{\overline{\mu }} l_{1} }{Re}\frac{1}{r}\,\,\,\,\,\,\,\,\,V_{x\theta ,42} =\frac{{\overline{\mu }} l_{1} }{Re}\frac{1}{r}\,\\&V_{r\theta ,34} =\frac{{\overline{\mu }} l_{1} }{Re}\frac{1}{r}\,\,\,\,\,\,\,\,\,V_{r\theta ,43} =\frac{{\overline{\mu }} l_{1} }{Re}\frac{1}{r}\,\, \end{aligned}$$

Appendix B: Linear stability equation with \(\alpha \) as an eigenvalue

$$\begin{aligned} \alpha ^{2}\left[ {{{\overline{V}}}_{2} \frac{\partial ^{2}\widehat{\phi }}{\partial r^{2}}+{{\overline{B}}}_{2} \frac{\partial {\widehat{\phi }}}{\partial r}+{{\overline{D}}}_{2} {\widehat{\phi }}} \right] +\alpha \left[ {{{\overline{V}}}_{1} \frac{\partial ^{2}{\widehat{\phi }}}{\partial r^{2}}+{{\overline{B}}}_{1} \frac{\partial {\widehat{\phi }}}{\partial r}+{{\overline{D}}}_{1} \widehat{\phi }} \right] +\left[ {{{\overline{V}}}_{0} \frac{\partial ^{2}\widehat{\phi }}{\partial r^{2}}+{{\overline{B}}}_{0} \frac{\partial {\widehat{\phi }}}{\partial r}+{{\overline{D}}}_{0} {\widehat{\phi }}} \right] =0 \end{aligned}$$

where \(\bar{{V}}_{0} =-V_{rr} \quad \bar{{B}}_{0} =B-i(mV_{r\theta })\) \(\bar{{D}}_{0} =D+m^{2}V_{\theta \theta } +i(mC-\omega \Gamma )\)

$$\begin{aligned}&\bar{{V}}_{1} =0 \quad \bar{{B}}_{1} =-V_{xr} \quad \bar{{D}}_{1} =iA+mV_{x\theta }\\&\bar{{V}}_{2} =0 \quad \bar{{B}}_{2} =0 \quad \bar{{D}}_{2} =V_{xx} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Park, D. Linear stability analysis of compressible vortex flows considering viscous effects. Theor. Comput. Fluid Dyn. 36, 799–820 (2022). https://doi.org/10.1007/s00162-022-00610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-022-00610-5

Keywords

Navigation