Skip to main content
Log in

Surface wrinkling and cracking dynamics in the drying of colloidal droplets

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The cracking behavior accompanied with the drying of colloidal droplets containing polytetrafluoroethylene (PTFE) nanoparticles was studied. During evaporation, due to the stretching effect of the liquid zone, the receding wet front leads to the formation of radialized surface wrinkling in the gel zone. This indicates the building of a macroscopic stress field with a similar distribution. As a result, the cracks in the deposited films are in a radial arrangement. The propagation velocity of the cracks depends on the thickness of the film, ∼ H 3/5 . In addition, sodium dodecylsulfate (SDS) additives can be used to tune crack behavior by causing a reduction of the capillary force between particles. The results highlight the significance of the receding wet front in building the drying deposition stress field and may be helpful in other fields related to drying and cracking processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Alexander, Rep. Prog. Phys. 76, 046603 (2013)

    Article  Google Scholar 

  2. K. Sefiane, R. Bennacer, Sci. Adv. Colloid Interface Sci. 147-148, 263 (2009)

    Article  Google Scholar 

  3. R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)

    Article  ADS  Google Scholar 

  4. P.J. Yunker, T. Still, M.A. Lohr, A.G. Yodh, Nature 476, 308 (2011)

    Article  ADS  Google Scholar 

  5. T. Still, P.J. Yunker, A.G. Yodh, Langmuir 28, 4984 (2012)

    Article  Google Scholar 

  6. R.G. Larson, Angew. Chem. Int. Edi. 51, 2546 (2012)

    Article  Google Scholar 

  7. G. Jing, J. Ma, J. Phys. Chem. B 116, 6225 (2012)

    Article  Google Scholar 

  8. K.I. Dragnevski, A.F. Routh, M.W. Murray, A.M. Donald, Langmuir 26, 7747 (2010)

    Article  Google Scholar 

  9. K.B. Singh, M.S. Tirumkudulu, Phys. Rev. Lett. 98, 218302 (2007)

    Article  ADS  Google Scholar 

  10. W. Man, W.B. Russel, Phys. Rev. Lett. 100, 198302 (2008)

    Article  ADS  Google Scholar 

  11. S. Kitsunezaki, Phys. Rev. E 87, 052805 (2013)

    Article  ADS  Google Scholar 

  12. L. Pauchard, M. Adda-Bedia, C. Allain, Y. Couder, Phys. Rev. E 67, 027103 (2003)

    Article  ADS  Google Scholar 

  13. L. Goehring, W.J. Clegg, A.F. Routh, Soft Matter 7, 7984 (2011)

    Article  ADS  Google Scholar 

  14. V. Lazarus, L. Pauchard, Soft Matter 7, 2552 (2011)

    Article  ADS  Google Scholar 

  15. L. Pauchard, F. Elias, P. Boltenhagen, A. Cebers, J.C. Bacri, Phys. Rev. E 77, 021402 (2008)

    Article  ADS  Google Scholar 

  16. T. Khatun, T. Dutta, S. Tarafdar, Langmuir 29, 15535 (2013)

    Article  Google Scholar 

  17. T. Kanai, T. Sawada, Langmuir 25, 13315 (2009)

    Article  Google Scholar 

  18. J. Qiao, J. Adams, D. Johannsmann, Langmuir 28, 8674 (2012)

    Article  Google Scholar 

  19. Q. Jin, P. Tan, A.B. Schofield, L. Xu, Eur. Phys. J. E 36, 28 (2013)

    Article  Google Scholar 

  20. L. Xu, S. Davies, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 101, 094502 (2008)

    Article  ADS  Google Scholar 

  21. J. Ma, G. Jing, Phys. Rev. E 86, 061406 (2012)

    Article  ADS  Google Scholar 

  22. Y. Zhang, Z. Liu, D. Zang, Y. Qian, K. Lin, Sci. China Phys. Mech. Astron. 56, 1712 (2013)

    Article  ADS  Google Scholar 

  23. E.R. Dufresne, E.I. Corwin et al., Phys. Rev. Lett. 91, 224501 (2003)

    Article  ADS  Google Scholar 

  24. E.R. Dufresne, D.J. Stark et al., Langmuir 22, 7144 (2006)

    Article  Google Scholar 

  25. R.C. Chiu, T.J. Garino, M.J. Cima, J. Am. Ceram. Soc. 76, 2257 (1993)

    Article  Google Scholar 

  26. P. Xu, A.S. Mujumdar, B. Yu, Dry. Technol. 27, 636 (2009)

    Article  Google Scholar 

  27. D. Vella, M. Adda-Bedia, E. Cerda, Soft Matter 6, 5778 (2010)

    Article  ADS  Google Scholar 

  28. J. Huang, M. Juszkiewicz, W.H. de Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Science 317, 650 (2007)

    Article  ADS  Google Scholar 

  29. L. Landau, E. Lifshitz, Theory of Elasticity. Course of Theoretical Physics, 3rd edition, Vol. 7 (Butterworth-Heinemann, 1986).

  30. C. Allain, L. Limat, Phys. Rev. Lett. 74, 2981 (1995)

    Article  ADS  Google Scholar 

  31. H. King, R.D. Schroll, B. Davidovitch, N. Menon, Proc. Natl. Acad. Sci. U.S.A. 109, 9716 (2012)

    Article  ADS  Google Scholar 

  32. M.S. Tirumkudulu, W.B. Russel, Langmuir 20, 2947 (2004)

    Article  Google Scholar 

  33. D. Vella, H.Y. Kim, P. Aussillous, L. Mahadevan, Phys. Rev. Lett. 96, 178301 (2006)

    Article  ADS  Google Scholar 

  34. M.M. Bandi, T. Tallinen, L. Mahadevan, EPL 96, 36008 (2011)

    Article  ADS  Google Scholar 

  35. H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Qian, Y., Liu, Z. et al. Surface wrinkling and cracking dynamics in the drying of colloidal droplets. Eur. Phys. J. E 37, 84 (2014). https://doi.org/10.1140/epje/i2014-14084-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14084-3

Keywords

Navigation