Skip to main content
Log in

Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Drying of colloidal droplets often develops versatile depositions. We study the drying deposition of both colloidal droplets containing silica nanoparticles and the silica colloidal droplets with polyethylene oxide (PEO) additives. We focus on the effect of polymer additives on the deposition formation and the cracking dynamics by using in-situ microscope observation. With PEO additives, a transition from ring-like deposition to uniform deposition is observed, and the cracking dynamics is greatly reduced. The PEO additives enhance the adsorption of particles at the air-water interface, thus forming the network structure at the interface which blocks the outward capillary flow. This contributes to the uniform deposition. Meanwhile, the multi-distribution of the aggregates size enhances the non-homogeneity of the drying film and consequently results in multi-nucleation of cracks. This reduces the stress accumulation that drives the crack propagation and may be responsible for the sluggish cracking dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kajiya T, Doi M. Dynamics of drying process of polymer solution droplets: Analysis of polymer transport and control of film profiles. J Soc Rheol Jpn, 2011, 39: 17–28

    Article  Google Scholar 

  2. Kuncicky D M, Velev O D. Surface-guided templating of particle assemblies inside drying sessile droplets. Langmuir, 2008, 24: 1371–1380

    Article  Google Scholar 

  3. Sirringhaus H, Kawase T, Friend R H, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290: 2123–2126

    Article  ADS  Google Scholar 

  4. Huang J, Kim F, Tao A R, et al. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater, 2005, 4: 896–900

    Article  ADS  Google Scholar 

  5. Kinge S, Crego-Calama M, Reinhoudt D N. Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem, 2008, 9: 20–42

    Article  Google Scholar 

  6. Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389: 827–829

    Article  ADS  Google Scholar 

  7. Yunker P J, Still T, Lohr M A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476: 308–311

    Article  ADS  Google Scholar 

  8. Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. J Phys Chem B, 2006, 110: 7090–7094

    Article  Google Scholar 

  9. Cui L, Zhang J, Zhang X, et al. Suppression of the coffee ring effect by hydrosoluble polymer additives. ACS Appl Mater Interfaces, 2012, 4: 2775–2780

    Article  Google Scholar 

  10. Jing G Y, Ma J. Formation of circular crack pattern in deposition self-assembled by drying nanoparticle suspension. J Phys Chem B, 2012, 116: 6225–6231

    Article  Google Scholar 

  11. Adelung R, Aktas O C, Franc J, et al. Strain-controlled growth of nanowires within thin-film cracks. Nat Mater, 2004, 3: 375–379

    Article  ADS  Google Scholar 

  12. Brutin D, Sobac B, Loquet B, et al. Pattern formation in drying drops of blood. J Fluid Mech, 2011, 667: 85–95

    Article  ADS  MATH  Google Scholar 

  13. Pauchard L, Adda-Bedia M, Allain C, et al. Morphologies resulting from the directional propagation of fractures. Phys Rev E, 2003, 67: 027103

    Article  ADS  Google Scholar 

  14. Goehring L, Clegg W J, Routh A F. Wavy cracks in drying colloidal films. Soft Matter, 2011, 7: 7984–7987

    Article  ADS  Google Scholar 

  15. Lazarus V, Pauchard L. From craquelures to spiral crack patterns: Influence of layer thickness on the crack patterns induced by desiccation. Soft Matter, 2011, 7: 2552–2559

    Article  ADS  Google Scholar 

  16. Sendova M, Willis K. Spiral and curved periodic crack patterns in sol-gel films. Appl Phys A, 2003, 76: 957–959

    Article  ADS  Google Scholar 

  17. Néda Z, Leung K, Józsa L, et al. Spiral cracks in drying precipitates. Phys Rev Lett, 2002, 88: 095502

    Article  ADS  Google Scholar 

  18. Tirumkudulu M S, Russel W B. Role of capillary stresses in film formation. Langmuir, 2004, 20: 2947–2961

    Article  Google Scholar 

  19. Singh K B, Tirumkudulu M S. Cracking in drying colloidal films. Phys Rev Lett, 2007, 98: 218302

    Article  ADS  Google Scholar 

  20. Lee W P, Routh A F. Why do drying films crack? Langmuir, 2004, 20: 9885–9888

    Article  Google Scholar 

  21. Chiu R C, Garino T J, Cima M J. Drying of granular ceramic films, I: Effect of processing variables on cracking behavior. J Am Ceram Soc, 1993, 76: 2257–2264

    Article  Google Scholar 

  22. Xu P, Mujumdar A S, Yu B. Drying-induced cracks in thin film fabricated from colloidal dispersions. Drying Technol, 2009, 27: 636–652

    Article  Google Scholar 

  23. Brinker C J, Scherer G W. Sol-GEL SCIEnce: The Physics and Chemistry of Sol-Gel Processing. New York: Academic, 1990

    Google Scholar 

  24. Routh A F, Russel W B. A process model for latex film formation: Limiting regimes for individual driving forces. Langmuir, 1999, 15: 7762–7773

    Article  Google Scholar 

  25. Tirumkudulu M S, Russel W B. Cracking in drying latex films. Langmuir, 2005, 21: 4938–4948

    Article  Google Scholar 

  26. Dufresne E R, Stark D J, Greenblatt N A, et al. Dynamics of fracture in drying suspensions. Langmuir, 2006, 22: 7144–7147

    Article  Google Scholar 

  27. Man W, Russel W B. Direct measurements of critical stresses and cracking in thin films of colloid dispersions. Phys Rev Lett, 2008, 100: 198302

    Article  ADS  Google Scholar 

  28. Pauchard L, Elias F, Boltenhagen P, et al. When a crack is oriented by a magnetic field. Phys Rev E, 2008, 77: 021402

    Article  ADS  Google Scholar 

  29. Kanai T, Sawada T. New route to produce dry colloidal crystals without cracks. Langmuir, 2009, 25: 13315–13317

    Article  Google Scholar 

  30. Qiao J Q, Adams J, Johannsmann D. Addition of halloysite nanotubes prevents cracking in drying latex films. Langmuir, 2012, 28: 8674–8680

    Article  Google Scholar 

  31. Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop. Phys Rev E, 2000, 62: 756–765

    Article  ADS  Google Scholar 

  32. Zebrowski J, Prasad V, Zhang W, et al. Shake-gels: Shear-induced gelation of laponite—PEO mixtures. Colloids Surf A, 2003, 213: 189–197

    Article  Google Scholar 

  33. Larson R G. Re-shaping the coffee ring. Angew Chem-Int Ed, 2012, 51: 2546–2548

    Article  Google Scholar 

  34. Vella D, Aussillous P, Mahadevan L. Elasticity of an interfacial particle raft. Europhys Lett, 2004, 68: 212–218

    Article  ADS  Google Scholar 

  35. Vella D, Ajdari A, Vaziri A, et al. Wrinkling of pressurized elastic shells. Phys Rev Lett, 2011, 107: 174301

    Article  ADS  Google Scholar 

  36. Zang D Y, Wang X L, Geng X G, et al. Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter, 2013, 9: 394–400

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DuYang Zang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Liu, Z., Zang, D. et al. Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives. Sci. China Phys. Mech. Astron. 56, 1712–1718 (2013). https://doi.org/10.1007/s11433-013-5280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5280-5

Keywords

Navigation