Skip to main content
Log in

One-electron transfer from helium targets to protons: the BCIS-4B and CDW-3B methods for state-selective and state-summed total cross sections vs measurements

  • Regular Article – Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The relative performance of three- and four-body perturbation methods is evaluated for one-electron transfer in proton–helium collisions in a large interval of impact energies from 10 to 11000 keV. The four-body boundary-corrected continuum intermediate state (BCIS-4B) method and the three-body continuum distorted wave (CDW-3B) method are used to compute the state-selective and state-summed total cross sections for the first four principal quantum number levels of the formed atomic hydrogen. Detailed comparisons of the obtained results with the corresponding experimental data are exploited to establish the lowest energy limit of applicability of the perturbation theories. As is well known, the CDW-3B method strongly departs from the experimental data below about 80 keV. On the other hand, the BCIS-4B method is presently found to successfully describe the measured cross sections at 20–10500 keV. Moreover, in sharp contrast to the CDW-3B method, in all the considered cases, the BCIS-4B method systematically predicts the experimentally observed Massey peaks at the expected positions of matching of the incident velocity and the electron orbital velocity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This article has no associated data in a data repository. [Authors’ comment: The numerical results reported here can also be made available upon request.]

References

  1. B.H. Bransden, M.R.C. McDowell, Charge Exchange and the Theory of Ion-Atom Collisions (Clarendon, Oxford, 1992)

    Google Scholar 

  2. Dž. Belkić, R. Gayet, A. Salin, Phys. Rep. 56, 279 (1979). https://doi.org/10.1016/0370-1573(79)90035-8

  3. Dž. Belkić, H.S. Taylor, Phys. Rev. A 35, 1991 (1987). https://doi.org/10.1103/PhysRevA.35.1991

  4. Dž. Belkić, S. Saini, H.S. Taylor, Phys. Rev. A 36, 1601 (1987). https://doi.org/10.1103/PhysRevA.36.1601

  5. Dž. Belkić, Phys. Rev. A 37, 55 (1988). https://doi.org/10.1103/PhysRevA.37.55

  6. Dž. Belkić, I. Mančev, J. Hanssen, Rev. Mod. Phys. 80, 249 (2008). https://doi.org/10.1103/RevModPhys.80.249

  7. Dž. Belkić, I. Bray, A.S. Kadyrov, State-of-the-Art Reviews in Energetic Ion-Atom and Ion-Molecule collisions (World Scientific Publishing, Singapore, 2019)

  8. Dž. Belkić, Adv. Quantum. Chem. 86, 223 (2022). https://doi.org/10.1016/bs.aiq.2022.07.003

  9. H.A. Slim, L. Heck, B.H. Bransden, D.R. Flower, J. Phys. B 24, 2353 (1991). https://doi.org/10.1088/0953-4075/24/17/002

    Article  ADS  Google Scholar 

  10. T.G. Winter, Phys. Rev. A 44, 4353 (1991). https://doi.org/10.1103/PhysRevA.44.4353

    Article  ADS  Google Scholar 

  11. M. Zapukhlyak, T. Kirchner, A. Hasan, B. Tooke, M. Schulz, Phys. Rev. A 77, 012720 (2008). https://doi.org/10.1103/PhysRevA.77.012720

    Article  ADS  Google Scholar 

  12. Sh.U. Alladustov, I.B. Abdurakhmanov, A.S. Kadyrov, I. Bray, K. Bartchat, Phys. Rev. A 99, 052706 (2019). https://doi.org/10.1103/PhysRevA.100.062708

    Article  ADS  Google Scholar 

  13. A. Igarashi, Dž. Kato, Phys. Scr. 98, 045403 (2023). https://doi.org/10.1088/1402-4896/acbb41

  14. G. Avendaño-Franco, B. Piraux, M. Grüning, X. Gonze, Theor. Chem. Acc. 131, 1289 (2012). https://doi.org/10.1007/s00214-012-1289-5

    Article  Google Scholar 

  15. M. Baxter, T. Kirchner, Phys. Rev. A 93, 012502 (2016). https://doi.org/10.1103/PhysRevA.93.012502

    Article  ADS  Google Scholar 

  16. J.C. De Faria, J. Santiago, Z. Francis, M.A. Bernal, J. Phys. Chem. A 127, 2453 (2023). https://doi.org/10.1021/acs.jpca.2c08213

    Article  Google Scholar 

  17. S. Zhao, W. Kang, J. Xue, X. Zhang, P. Zhang, Phys. Lett. A 379, 319 (2015). https://doi.org/10.1016/J.PHYSLETA.2014.11.008

    Article  Google Scholar 

  18. R.C. Isler, Plasma Phys. Control. Fusion 36, 171 (1994). https://doi.org/10.1088/0741-3335/36/2/001

    Article  ADS  Google Scholar 

  19. D.M. Thomas, Phys. Plasmas 19, 056118 (2012). https://doi.org/10.1063/1.3699235

    Article  ADS  Google Scholar 

  20. H. Anderson, M.G. von Hellermann, R. Hoekstra, L.D. Horton, A.C. Howman, R.W.T. Konig, R. Martin, R.E. Olson, H.P. Summers, Plasma Phys. Control Fusion 42, 781 (2000). https://doi.org/10.1088/0741-3335/42/7/304

    Article  ADS  Google Scholar 

  21. Y. Ralchenko, I.N. Draganić, J.N. Tan, J.D. Gillaspy, J.M. Pomeroy, J. Reader, U. Feldman, G.E. Holland, J. Phys. B 41, 021003 (2008). https://doi.org/10.1088/0953-4075/41/2/021003

    Article  ADS  Google Scholar 

  22. R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H.P.L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, P. Zaccaria, Nucl. Fusion 49, 045006 (2009). https://doi.org/10.1088/0029-5515/49/4/045006

  23. O. Marchuk, Phys. Scr. 89, 114010 (2014). https://doi.org/10.1088/0031-8949/89/11/114010

    Article  ADS  Google Scholar 

  24. T.E. Cravens, Science 296, 1042 (2002). https://doi.org/10.1126/science.1070001

    Article  ADS  Google Scholar 

  25. K. Heng, R.A. Sunyaev, Astron. Astrophys. 481, 117 (2008). https://doi.org/10.1051/0004-6361:20078906

    Article  ADS  Google Scholar 

  26. Dž. Belkić, J. Math. Chem. 47, 1366 (2010). https://doi.org/10.1007/s10910-010-9663-9

  27. Dž. Belkić (ed.), Theory of Heavy Ion Collision Physics in Hadron Therapy (Elsevier, Amsterdam, 2013)

  28. Dž. Belkić, Z. Med, Phys. 31, 122 (2021). https://doi.org/10.1016/j.zemedi.2020.07.003

  29. Dž. Belkić, Adv. Quantum Chem. 84, 267 (2021). https://doi.org/10.1016/bs.aiq.2021.03.001

  30. M.A. Rodríguez-Bernal, J.A. Liendo, Nucl. Instrum. Methods Phys. Res. B 262, 1 (2007). https://doi.org/10.1016/j.nimb.2007.05.001

  31. M.A. Bernal, J.A. Liendo, S. Incerti, Z. Francis, H.N. Tran, Nucl. Instrum. Methods Phys. Res. B 517, 34 (2022). https://doi.org/10.1016/j.nimb.2022.01.015

  32. E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 11, 210 (2017). https://doi.org/10.1140/epjd/e2017-80120-0

  33. S. Guatelli, D. Bolst, Z. Francis, S. Incerti, V. Ivanchenko, A.B. Rosenfeld, Ch 10 in State-of-the-Art Reviews in Energetic Ion-Atom and Ion-Molecule collisions, Belkić, Dž., Bray, I., Kadyrov, A.S. (Eds.), World Scientific Publishing, Singapore (2019)

  34. W.P. Levin, H. Kooy, J.S. Loeffler, T.F. DeLaney, Br. J. Cancer 91, 849 (2005). https://doi.org/10.1038/sj.bjc.6602754

  35. H. Suit, T. DeLaney, S. Goldberg, H. Paganetti, B. Clasie, L. Gerweck, A. Niemierko, E. Hall, J. Flanz, J. Hallman, A. Trofimov, Radiother. Oncol. 95, 3 (2010). https://doi.org/10.1016/j.radonc.2010.01.015

    Article  Google Scholar 

  36. I. Ziaeian, K. Tökési, Sci. Rep. 11, 20164 (2021). https://doi.org/10.1038/s41598-021-99759-y

  37. I. Ziaeian, K. Tökési, At. Data Nucl. Data Tables 146, 101509 (2022). https://doi.org/10.1016/j.adt.2022.101509

  38. I.M. Cheshire, Proc. Phys. Soc. 84, 89 (1964). https://doi.org/10.1088/0370-1328/84/1/313

  39. Dž. Belkić, R. Gayet, J. Phys. B 10, 1923 (1977). https://doi.org/10.1088/0022-3700/10/10/021

  40. Dž. Belkić, R. Gayet, A. Salin, Comput. Phys. Commun. 32, 385 (1984). https://doi.org/10.1016/0010-4655(84)90055-9

  41. Dž. Belkić, R. Gayet, J. Hanssen, I. Mančev, A. Nuñez, Phys. Rev. A 56, 3675 (1997). https://doi.org/10.1103/PhysRevA.56.3675

  42. I. Mančev, Phys. Rev. A 60, 351 (1999). https://doi.org/10.1103/PhysRevA.60.351

  43. Dž. Belkić, Quantum Theory of High-Energy Ion-Atom Collisions (Taylor & Francis, London, 2008)

  44. I. Mančev, N. Milojević, Dž. Belkić, Eur. Phys. J. D 72, 209 (2018). https://doi.org/10.1140/epjd/e2018-90290-8

  45. I. Mančev, N. Milojević, D. Delibašić, Dž. Belkić, Phys. Scr. 95, 065403 (2020). https://doi.org/10.1088/1402-4896/ab725e

  46. N. Milojević, I. Mančev, D. Delibašić, Dž. Belkić, Phys. Rev. A 102, 012816 (2020). https://doi.org/10.1103/PhysRevA.102.012816

  47. D. Delibašić, N. Milojević, I. Mančev, Dž. Belkić, At. Data Nucl. Data Tables 139, 101417 (2021). https://doi.org/10.1016/j.adt.2021.101417

  48. D. Delibašić, N. Milojević, I. Mančev, Dž. Belkić, Eur. Phys. J. D 75, 115 (2021). https://doi.org/10.1140/epjd/s10053-021-00123-6

  49. I. Mančev, N. Milojević, Dž. Belkić, Phys. Rev. A 91, 062705 (2015). https://doi.org/10.1103/PhysRevA.91.062705

  50. N. Milojević, I. Mančev, Dž. Belkić, Phys. Rev. A 96, 032709 (2017). https://doi.org/10.1103/PhysRevA.96.032709

  51. R.A. Mapleton, R.W. Doherty, P.E. Meehan, Phys. Rev. 9, 1013 (1974). https://doi.org/10.1103/PhysRevA.9.1013

  52. H.K. Kim, M.S. Schöffler, S. Houamer, O. Chuluunbaatar, J.N. Titze, L. Ph, H. Schmidt, T. Jahnke, H. Schmidt-Böcking, A. Galstyan, Yu.V. Popov, R. Dörner, Phys. Rev. A 85, 022707 (2012). https://doi.org/10.1103/PhysRevA.85.022707

    Article  ADS  Google Scholar 

  53. M.S. Schöffler, H.K. Kim, O. Chuluunbaatar, S. Houamer, A.G. Galstyan, J.N. Titze, T. Jahnke, L. Ph, H. Schmidt, H. Schmidt-Böcking, R. Dörner, Yu.V. Popov, A.A. Bulychev, Phys. Rev. A 89, 032707 (2014). https://doi.org/10.1103/PhysRevA.89.032707

    Article  ADS  Google Scholar 

  54. J.N. Silverman, O. Platas, F.A. Matsen, J. Chem. Phys. 32, 1402 (1960). https://doi.org/10.1063/1.1730930

    Article  ADS  Google Scholar 

  55. R.H. Hughes, E.D. Stokes, C. Song-Sik, T.J. King, Phys. Rev. 4, 1453 (1971). https://doi.org/10.1103/PhysRevA.4.1453

    Article  ADS  Google Scholar 

  56. R. Cline, P.J.M. van der Burgt, W.B. Westerveld, J.S. Risley, Phys. Rev. A 49, 2613 (1994). https://doi.org/10.1103/PhysRevA.49.2613

    Article  ADS  Google Scholar 

  57. R. Hippler, W. Harbich, M. Faust, H.O. Lutz, L.J. Dube, J. Phys. B 19, 1507 (1986). https://doi.org/10.1088/0022-3700/19/10/019

    Article  ADS  Google Scholar 

  58. R. Hippler, W. Harbich, H. Madeheim, H. Kleinpoppen, H.O. Lutz, Phys. Rev. A 35, 3139 (1987). https://doi.org/10.1103/PhysRevA.35.3139

    Article  ADS  Google Scholar 

  59. J.C. Ford, E.W. Thomas, Phys. Rev. A 5, 1694 (1972). https://doi.org/10.1103/PhysRevA.5.1694

    Article  ADS  Google Scholar 

  60. R.J. Conrads, T.W. Nichols, J.C. Ford, E.W. Thomas, Phys. Rev. A 7, 1928 (1973). https://doi.org/10.1103/PhysRevA.7.1928

    Article  ADS  Google Scholar 

  61. M.C. Brower, F.M. Pipkin, Phys. Rev. A 39, 3323 (1989). https://doi.org/10.1103/PhysRevA.39.3323

    Article  ADS  Google Scholar 

  62. R.A. Cline, W.B. Westerveld, J.S. Risley, Phys. Rev. A 43, 1611 (1991). https://doi.org/10.1103/PhysRevA.43.1611

    Article  ADS  Google Scholar 

  63. J.L. Edwards, E.W. Thomas, Phys. Rev. A 2, 2346 (1970). https://doi.org/10.1103/PhysRevA.2.2346

    Article  ADS  Google Scholar 

  64. R.H. Hughes, H.R. Dawson, B.M. Doughty, Phys. Rev. 164, 166 (1967). https://doi.org/10.1103/PhysRev.164.166

    Article  ADS  Google Scholar 

  65. B.M. Doughty, M.L. Goad, R.W. Cernosek, Phys. Rev. A 18, 29 (1978). https://doi.org/10.1103/PhysRevA.18.29

    Article  ADS  Google Scholar 

  66. E.P. Andreev, V.A. Ankudinov, S.V. Bobashev, Zh. Eksp. Teor. Fiz. 50, 565 (1966). [Sov. Phys. JETP 23, 375 (1966); In: Abstracts of Papers, V ICPEAC, Edited by Flaks, I.P., Solov’ev, E.S. (Leningrad, Nauka, USSR, 1967), p. 309]

  67. R.N. Il’in, V.A. Oparin, E.S. Solov’ev, N.V. Fedorenko, Zh. Eksp. Teor. Fiz. Pis. Red. 2, 310 (1965). [Sov. Phys. JETP Lett. 2, 197 (1965)]

  68. J. Lenormand, J. Physique 37, 699 (1976). https://doi.org/10.1051/jphys:01976003706069900

    Article  Google Scholar 

  69. S.V. Bobashev, V.A. Ankudinov, E.P. Andreev, Zh. Eksp. Teor. Fiz. 48, 833 (1965). [Sov. Phys. JETP 21, 554 (1965)]

  70. K.H. Berkner, S.N. Kaplan, G.A. Paulikas, R.V. Pule, Phys. Rev. 140, A729 (1065). https://doi.org/10.1103/PhysRev.140.A729

  71. L.M. Welsh, K.H. Berkner, S.N. Kaplan, R.V. Pyle, Phys. Rev. 158, 85 (1967). https://doi.org/10.1103/PhysRev.158.85

    Article  ADS  Google Scholar 

  72. U. Schryber, Helv. Phys. Acta 40, 1023 (1967). https://doi.org/10.5169/seals-113807

    Article  Google Scholar 

  73. J.F. Williams, Phys. Rev. 157, 97 (1967). https://doi.org/10.1103/PhysRev.157.97

    Article  ADS  Google Scholar 

  74. P.J. Martin, K. Arnett, D.M. Blankenship, T.J. Kvale, J.L. Peacher, E. Redd, V.C. Sutcliffe, J.T. Park, C.D. Lin, J.H. McGuire, Phys. Rev. A 23, 2858 (1981). https://doi.org/10.1103/PhysRevA.23.2858

    Article  ADS  Google Scholar 

  75. E. Horsdal-Pedersen, C. Cocke, M. Stockli, Phys. Rev. Lett. 50, 1910 (1983). https://doi.org/10.1103/PhysRevLett.50.1910

    Article  ADS  Google Scholar 

  76. M.B. Shah, H.B. Gilbody, J. Phys. B 18, 899 (1985). https://doi.org/10.1088/0022-3700/18/5/010

    Article  ADS  Google Scholar 

  77. M.B. Shah, P. McCallion, H.B. Gilbody, J. Phys. B 22, 3037 (1989). https://doi.org/10.1088/0953-4075/22/19/018

  78. J.R. Oppenheimer, Phys. Rev. 31, 349 (1928). https://doi.org/10.1103/PhysRev.31.349

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N. Milojević, I. Mančev and D. Delibašić thank the Ministry of Science, Technological Development and Innovation of the Republic of Serbia for support under Contract No. 451-03-47/2023-01/200124. Dž. Belkić appreciates the support by the Research Funds of the Radiumhemmet and the Fund for Research, Development and Education (FoUU) of the Stockholm County Council.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ivan Mančev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing funding, employment, financial or non-financial interests that could have appeared to influence the work reported in this paper.

Additional information

Guest editors: Bratislav Obradović, Jovan Cvetić, Dragana Ilić, Vladimir Srećković and Sylwia Ptasinska.

T.I.: Physics of Ionized Gases and Spectroscopy of Isolated Complex Systems: Fundamentals and Applications.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milojević, N., Mančev, I., Delibašić, D. et al. One-electron transfer from helium targets to protons: the BCIS-4B and CDW-3B methods for state-selective and state-summed total cross sections vs measurements. Eur. Phys. J. D 77, 81 (2023). https://doi.org/10.1140/epjd/s10053-023-00653-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00653-1

Navigation