Skip to main content
Log in

Electron acoustic shock waves in nonisothermal dissipative plasmas

  • Regular Article – Plasma Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The propagation characteristics of weakly nonlinear electron acoustic waves in the presence of nonisothermal (trapped) hot electrons are investigated in collisional plasmas. The dynamics of the nonlinear waves are found to be governed by Schamel–Burgers and Schamel–Korteweg–de Vries–Burgers-type equations depending on the strength of the nonisothermal parameter. Burgers’ terms appear due to the anomalous dissipation introduced by the collisions between cold electrons and immobile ions in the presence of collective phenomena (plasma current). The derived nonlinear equations are solved analytically with the help of the Tanh method. The time-dependent computational results well agree with the analytical results and predict the possibility of the oscillatory and monotonic shock-like structures depending on the strength of the collisional drag and nonisothermality of hot electrons. The trapped electrons significantly modify the amplitude and width of the nonlinear pulse. The results may explain the shock formation and the particle acceleration mechanism in auroral plasma region.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request.]

References

  1. F.S. Mozer, C.W. Carlson, M.K. Hudson, R.B. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Phys. Rev. Lett. 38, 292 (1977)

    ADS  Google Scholar 

  2. C.A. Cattell, J. Dombeck, J.R. Wygant, M.K. Hudson, F.S. Mozer, M.A. Temerin, W.K. Peterson, C.A. Kletzing, C.T. Russell, R.F. Pfaff, Geophys. Res. Lett. 26, 425 (1999)

    ADS  Google Scholar 

  3. R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984)

    ADS  Google Scholar 

  4. T. Miyake, Y. Omura, H. Matsumoto, J. Geophys. Res.: Space Phys. 105, 23239 (2000)

    ADS  Google Scholar 

  5. R. Ergun, C. Carlson, L. Muschietti, I. Roth, J.P. McFadden, Nonlinear Process. Geophys. 6, 187 (1999)

    ADS  Google Scholar 

  6. C. Cattell, J. Dombeck, J. Wygant, J.F. Drake, M. Swisdak, M.L. Goldstein, W. Keith, A. Fazakerley, M. André, E. Lucek et al., J. Geophys. Res.: Space Phys. 110, A01211 (2005)

  7. S. Chowdhury, S. Biswas, N. Chakrabarti, R. Pal, Phys. Plasmas 24, 062111 (2017)

    ADS  Google Scholar 

  8. B.D. Fried, R.W. Gould, Phys. Fluids 4, 139 (1961)

    ADS  MathSciNet  Google Scholar 

  9. M.F. Thomsen, H.C. Barr, S.P. Gary, W.C. Feldman, T.E. Cole, J. Geophys. Res.: Space Phys. 88, 3035 (1983)

    ADS  Google Scholar 

  10. W.C. Feldman, R.C. Anderson, S.J. Bame, J. Geophys. Res.: Space Phys. 88, 96 (1983)

    ADS  Google Scholar 

  11. S.P. Gary, R.L. Tokar, Phys. Fluids 28, 2439 (1985)

    ADS  Google Scholar 

  12. N. Dubouloz, R. Pottelette, M. Malingre, R.A. Treumann, Geophys. Res. Lett. 18, 155 (1991)

    ADS  Google Scholar 

  13. N. Dubouloz, R.A. Treumann, R. Pottelette, M. Malingre, J. Geophys. Res.: Space Phys. 98, 17415 (1993)

    ADS  Google Scholar 

  14. C. Cattell, R. Bergmann, K. Sigsbee, C. Carlson, C. Chaston, R. Ergun, J. McFadden, F.S. Mozer, M. Temerin M, R. Strangeway et al., Geophys. Res. Lett. 25, 2053 (1998)

  15. D. Schriver, M.A. Abdalla, Geophys. Res. Lett. 16, 899 (1989)

    ADS  Google Scholar 

  16. R.E. Ergun, C.W. Carlson, J.P. McFadden, F.S. Mozer, G.T. Delory, W. Peria, C.C. Chaston, M. Temerin, I. Roth, L. Muschietti et al., Geophys. Res. Lett. 25, 2041 (1998)

  17. J.R. Franz, P.M. Kintner, J.S. Pickett, Geophys. Res. Lett. 25, 1277 (1998)

    ADS  Google Scholar 

  18. R. Pottelette, R.E. Ergun, R.A. Treumann, M. Berthomier, C.W. Carlson, J.P. McFadden, I. Roth, Geophys. Res. Lett. 26, 2629 (1999)

    ADS  Google Scholar 

  19. R.L. Mace, S. Baboolal, R. Bharuthram, M.A. Hellberg, J. Plasma Phys. 45, 323 (1991)

    ADS  Google Scholar 

  20. S.V. Singh, G.S. Lakhina, Planet. Space Sci. 49, 107 (2001)

    ADS  Google Scholar 

  21. M. Berthomier, R. Pottelette, L. Muschietti, I. Roth, C.W. Carlson, J. Geophys. Res.: Space Phys. 30, 1 (2003)

    Google Scholar 

  22. M. Dutta, S. Ghosh, N. Chakrabarti, Phys. Rev. E 86, 066408 (2012)

    ADS  Google Scholar 

  23. A. Biswas, S. Ghosh, N. Chakrabarti, Phys. Scr. 95, 105603 (2020)

    ADS  Google Scholar 

  24. M. Ghosh, S. Pramanik, S. Ghosh, Phys. Lett. A 396, 127242 (2021)

    Google Scholar 

  25. J.R. Asbridge, S.J. Bame, I.B. Strong, J. Geophys. Res. 73, 5777 (1968)

    ADS  Google Scholar 

  26. Y. Futaana, S. Machida, Y. Saito, A. Matsuoka, H. Hayakawa, J. Geophys. Res.: Space Phys. 108, SMP-15-1 (2003)

    Google Scholar 

  27. R. Lundin, A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E.M. Dubinin, S.W. Barabash, I. Liede, H. Koskinen, Nature 341, 609 (1989)

    ADS  Google Scholar 

  28. D. Henry, J.P. Trguier, J. Plasma phys. 8, 311 (1972)

    ADS  Google Scholar 

  29. A. Mamun, Eur. Phys. J. D 45, 323 (2000)

    Google Scholar 

  30. T.S. Gill, P. Bala, H. Kaur, N.S. Saini, S. Bansal, J. Kaur, Eur. Phys. J. D 31, 91 (2004)

    ADS  Google Scholar 

  31. A.P. Misra, A.R. Chowdhury, Eur. Phys. J. D 37, 105 (2006)

    ADS  Google Scholar 

  32. D. Chakraborty, S. Ghosh, Eur. Phys. J. D 75, 1 (2021)

    ADS  Google Scholar 

  33. H. Schamel, Plasma Phys. 14, 905 (1972)

    ADS  Google Scholar 

  34. H. Schamel, J. Plasma Phys. 9, 377 (1973)

    ADS  Google Scholar 

  35. H. Schamel, Phys. Scr. 20, 306 (1979)

    ADS  Google Scholar 

  36. H. Schamel, Phys. Scr. T2A, 228 (1982)

    ADS  Google Scholar 

  37. H. Schamel and J. Korn, Phys. Scr. T63, 63 (1996)

  38. W.F. El-Taibany, J. Geophys. Res.: Space Phys. 110, 1 (2005)

    Google Scholar 

  39. S. Sultana, A. Mannan, R. Schlickeiser, Eur. Phys. J. D 73, 220 (2019)

    ADS  Google Scholar 

  40. D.S. Montgomery, R.J. Focia, H.A. Rose, D.A. Russell, J.A. Cobble, J.C. Fernández, R.P. Johnson, Phys. Rev. Lett. 87, 155001 (2001)

    ADS  Google Scholar 

  41. G. Petraconi, H.S. Maciel, J. Phys. D: Appl. Phys. 36, 2798 (2003)

    ADS  Google Scholar 

  42. R.E. Ergun, Y.J. Su, L. Andersson, C.W. Carlson, J.P. McFadden, F.S. Mozer, D.L. Newman, M.V. Goldman, R.J. Strangeway, Phys. Rev. Lett. 87, 045003 (2001)

    ADS  Google Scholar 

  43. L. Andersson, R.E. Ergun, D.L. Newman, J.P. McFadden, C.W. Carlson, Y.J. Su, Phys. Plasmas 9, 3600 (2002)

    ADS  Google Scholar 

  44. R.E. Ergun, L. Andersson, D. Main, Y.J. Su, D.L. Newman, M.V. Goldman, C.W. Carlson, A.J. Hull, J.P. McFadden, F.S. Mozer, J. Geophys. Res.: Space Phys. 109, 1 (2004)

    Google Scholar 

  45. N.B. Nagel, Phys. Chem. Earth, Part A: Solid Earth Geod. 26, 3 (2001)

    ADS  Google Scholar 

  46. A.V. Volosevich, Y.I. Galperin, Ann. Geophys. 15, 890 (1997)

    ADS  Google Scholar 

  47. S. Watanabe, J. Phys. Soc. Jpn. 45, 276 (1978)

    ADS  Google Scholar 

  48. A. Adak, S. Sengupta, Eur. Phys. J. D 73, 197 (2019)

    ADS  Google Scholar 

  49. J.K. Xue, Eur. Phys. J. D 26, 211 (2003)

    ADS  Google Scholar 

  50. S. Sultana, I. Kourakis, Eur. Phys. J. D 66, 100 (2012)

    ADS  Google Scholar 

  51. O. Pezzia, F. Valentini, P. Veltri, Eur. Phys. J. D 68, 128 (2014)

    ADS  Google Scholar 

  52. A.R. Seadawy, I. Mujahid, L. Dianchen, Phys. A: Stat. Mech. Appl. 544, 123560 (2020)

    Google Scholar 

  53. W. Malfliet, W. Hereman, Phys. Scr. 54, 563 (1996)

    ADS  Google Scholar 

  54. R.C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972)

    Google Scholar 

  55. T. Taniuti, Prog. Theor. Phys. Suppl. 55, 1 (1974)

    ADS  Google Scholar 

  56. V.I. Karpman, Phys. Scr. 20, 462 (1979)

    ADS  Google Scholar 

  57. V.Y. Belashov, S.V. Vladimirov, Solitary Waves in Dispersive Complex Media (Springer, Berlin, 2005)

    MATH  Google Scholar 

  58. V.I. Karpman, Non-linear Waves in Dispersive Media: International Series of Monographs in Natural Philosophy, vol. 71 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  59. H. Schamel, J. Korn, Phys. Scr. T63, 63 (1996)

  60. R.S. Johnson, J. Fluid Mech. 42, 49 (1970)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors (A. S. and S. P.) would like to thank the DST and UGC, Govt. of India for providing INSPIRE Fellowship (Ref. DST/INSPIRE Fellowship/2017/IFI70322) and Dr. D. S. Kothari Post Doctoral Fellowship(Ref. PH/19-20/0016), respectively. The authors thank the referees for the careful reading and offering constructive suggestions to improve the manuscript. The authors would also like to acknowledge Mr. Debkumar Chakraborty for his valuable help and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Arpita Shome.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Appendix A: Derivations of the analytical shock solutions

Appendix A: Derivations of the analytical shock solutions

In Eq. (35), we put \(\phi _{1}(\chi )=f_1^2(Y)\) [where \(Y=\tanh (c\chi )\) and \(c^{-1}\) is the characteristic width of the solution] to eliminate the square root term and substituting this, we obtain

$$\begin{aligned}{} & {} \mu c\left[ (1-Y^2)\frac{\mathrm{{d}}}{\mathrm{{d}}Y}\left[ 2(1-Y^2)f_1\frac{\mathrm{{d}} f_1}{\mathrm{{d}} Y}\right] \right] \nonumber \\{} & {} \quad =2\left( u_f-\alpha _1 f_1+\alpha _2f_1^2\right) (1-Y^2)f_1\frac{\mathrm{{d}} f_1}{\mathrm{{d}} Y} \nonumber \\{} & {} \qquad +lc^2 (1-Y^2)\frac{\mathrm{{d}}}{\mathrm{{d}} Y}\left[ (1-Y^2)\frac{\mathrm{{d}}}{\mathrm{{d}}Y}\left[ 2(1-Y^2)f_1\frac{\mathrm{{d}} f_1}{\mathrm{{d}} Y}\right] \right] .\nonumber \\ \end{aligned}$$
(A.1)

Following the standard procedure [53], \(f_1(Y)\) is expressed as the power series of Y as

$$\begin{aligned} f_1(Y)=\sum \limits _{n=0}^N a_n Y^n. \end{aligned}$$
(A.2)

Substituting this expansion in (A.1) and then balancing the highest powers (the second and fourth terms in right-hand side), we obtain \(N=1\). Finally, we assume the solution of Eq. (35) of the form

$$\begin{aligned} \phi _1(\chi )=\varPhi \left[ \frac{1-\tanh (c\chi )}{2}\right] ^2. \end{aligned}$$
(A.3)

Putting this solution into the ODE [Eq. (35)] and equating the coefficients of like powers of \(\tanh (c\chi )\), we obtain the system of simultaneous homogeneous equations as

$$\begin{aligned} \begin{bmatrix} 1 &{} \;\;\;2 &{} \;\;1 &{}\; -1 &{} \;\;\;1\\ 1 &{} \;\;\;8 &{} -2 &{} \;-2 &{} \;\;\;3\\ 1 &{} \;\;\;8 &{}\;\; 4 &{}\;\;\; 0 &{} \;-2\\ 1 &{} \;\;\;20 &{} -2 &{}\; -2 &{} \;\;\;2\\ 0 &{} \;\;\;6 &{} \;\;3 &{}\;\;\; 1 &{} \;-3\\ 0 &{} \;-12 &{}\;\; 0 &{}\;\;\; 0 &{} \;\;\;1\\ \end{bmatrix} \begin{bmatrix} u_f\\ lc^2\\ \mu c\\ \frac{\sqrt{\varPhi }}{2 \alpha _1}\\ \frac{\varPhi }{4 \alpha _2}\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ \end{bmatrix}. \end{aligned}$$
(A.4)

After some elementary matrix operations, we obtain the following system of equations

$$\begin{aligned} u_f= & {} \frac{2\;\sqrt{\varPhi }\alpha _1}{3}-\frac{\varPhi \alpha _2}{2}, lc^2=\frac{\varPhi \alpha _2}{48}, \nonumber \\ \mu c= & {} -\frac{\sqrt{\varPhi }\alpha _1}{6}+\frac{5}{24}\varPhi \alpha _2. \end{aligned}$$
(A.5)

The last two equations are independent of \(u_f\), and therefore, solving the first equation, we obtain

$$\begin{aligned} \sqrt{\varPhi }_{\pm }=\frac{2\alpha _1}{3\alpha _2}\pm \sqrt{\left( \frac{2\alpha _1}{3\alpha _2}\right) ^2-\frac{2u_f}{\alpha _2}}. \end{aligned}$$
(A.6)

However, only the \(\varPhi _{-}\) root yields the physically consistent solution (see Sect. 5) and thereby we consider only the root \(\varPhi _{-}\) as

$$\begin{aligned} \sqrt{\varPhi }=\left( 1+\frac{3}{\alpha }\right) ^{-1}\left[ b-\sqrt{b^2-\frac{4u_f \left( 1+\frac{3}{\alpha }\right) }{\sqrt{\alpha }}}\right] . \end{aligned}$$
(A.7)

This result well agree with our fixed point analysis of the SKdVB equation Eq.(18). Finally, the last two equations of Eq. (A.5) yields

$$\begin{aligned} c=\frac{\mu }{10l}\pm \frac{\alpha _1}{\sqrt{75\alpha _2 l}}. \end{aligned}$$
(A.8)

This clearly shows in case of − sign, the \(c^{-1}\) (width) becomes infinite at a critical value of \(\mu \), which is unphysical, and therefore, we consider

$$\begin{aligned} c=\left[ \frac{\alpha _1}{\sqrt{75\alpha _2 l}}+\frac{\mu }{10l}\right] =\frac{1}{10}\left[ \sqrt{\frac{3b^2}{\alpha +3}}+\frac{\nu }{\sqrt{\alpha }}\right] . \end{aligned}$$
(A.9)

Similarly, for SB equation [Eq. (21); \(b\gg O(\sqrt{\epsilon })\)], proceeding as before, we determine \(N=2\) and the solution is then assumed as

$$\begin{aligned} \phi _1(\chi )=\varPhi _s\left[ \frac{1-\tanh (c\chi )}{2}\right] ^4, \end{aligned}$$
(A.10)

Substituting Eq. (A.10) into Eq. (44) and then equating the coefficients of different powers of \(\tanh (c\chi )\), we obtain the system of equations as

$$\begin{aligned} \begin{bmatrix} \;4 &{} \;-16 &{} \;\;12 &{}\;\; -1\\ -12 &{} \;-72 &{} -16 &{} \;\;\;\;\;5\\ \;\;8 &{} \;\;\;208 &{}\; -36 &{}\;\;\; -9\\ \;\;8 &{} \;\;\;88 &{} \;\;64 &{}\;\;\;\;\; 5\\ -12 &{} \;-432 &{}\;\; 4 &{}\;\;\;\;\; 5\\ \;\;4 &{} \;\;\;104 &{} \;\;\;48 &{}\;\;\; -9\\ \;\;0 &{} \;\;\;240 &{} \;\;\;20 &{}\;\;\;\;\; 5\\ \;\;0 &{} \;\;-120 &{} \;\;\;0 &{}\;\;\; -1 \end{bmatrix} \begin{bmatrix} u_f\\ lc^2\\ \mu c\\ \frac{\sqrt{\varPhi }}{2 \alpha _1}\\ \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{bmatrix} \end{aligned}$$
(A.11)

Again after some elementary matrix operations, we obtain the following system of equations,

$$\begin{aligned}{} & {} 4u_f-16lc^2-12\mu c-\alpha _1\sqrt{\varPhi _s}=0,\nonumber \\{} & {} \quad -120lc^2-\alpha _1\sqrt{\varPhi _s}=0,\;20\mu c+3\alpha _1\sqrt{\varPhi _s}=0. \nonumber \\ \end{aligned}$$
(A.12)

From these equations, we obtain

$$\begin{aligned} \sqrt{\varPhi _s}=\frac{2u_f}{b\sqrt{\alpha }},\;\;c=\frac{\nu }{18\sqrt{\alpha }}. \end{aligned}$$
(A.13)

These results are also well agree with our fixed point analysis of SB equation [Eq. (21)].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shome, A., Pramanik, S. & Ghosh, S. Electron acoustic shock waves in nonisothermal dissipative plasmas. Eur. Phys. J. D 76, 217 (2022). https://doi.org/10.1140/epjd/s10053-022-00548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00548-7

Navigation