Skip to main content
Log in

Superdense coding based on intraparticle entanglement states

  • Regular Article - Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

High channel capacity always plays an important role in quantum communication. Dense coding is an effective way to improve channel capacity, whose core idea is to apply as few particles as possible to carry information. Quantum entanglement exists not only between multiple particles but also in various degrees of freedom of a single-particle (intraparticle entanglement). Compared with the former (entanglement among multi-particles), firstly, the latter (intraparticle entanglement) can enable more bits of information to be transmitted in one-time communication by utilizing more degrees of freedom of single-particle. Secondly, the latter is more robust than the former. Thus, in this paper, based on the current experiment technology level, a scheme is designed to encode, transmit, and process 3 bits of classical information by applying the intraparticle entanglement state of a single-photon with three degrees of freedom in theory. Based on the literature survey, this scheme reaches the level at which a single-photon currently carries the most information with good security and robustness, and this work reveals a good idea for realizing superdense coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. [Authors comment: This is a theoretical work and analytical calculations are made. Therefore, no data are produced.]

References

  1. H. Lai, J. Pieprzyk, M.X. Luo et al., High-capacity (2, 3) threshold quantum secret sharing based on asymmetric quantum lossy channels. Quantum Inf. Process 19, 5 (2020)

    Article  MathSciNet  Google Scholar 

  2. F. Steinlechner, S. Ecker, M. Fink et al., Distribution of high dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2016)

    Article  ADS  Google Scholar 

  3. R.T. Zhao, L.L. Cheng, High capacity information transmission with single-photon in polarization and spatial mode degrees of freedom over a collective noisy channel. Laser Phys. 30(6), 065204 (2020)

    Article  ADS  Google Scholar 

  4. H.R. Wei, W.Q. Liu, N.Y. Chen, Implementing a two-photon three-degrees-of-freedom hyper-parallel controlled phase flip gate through cavity-assisted interactions. Ann. Phys. 532(4), 1900578 (2020)

    Article  MathSciNet  Google Scholar 

  5. L. Li, T. Wang, C. Wang, The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons. Mod. Phys. Lett. B 34, 2050017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Cai, Z. Pan, T. Wang et al., High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits. Int. J. Quantum Inf. 14, 1650043 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.A. Kögler, L. Neves, Optimal Probabilistic Dense Coding Schemes (Kluwer Academic Publishers, New York, 2017)

    Book  MATH  Google Scholar 

  8. Z.M. Huang, C. Zhang, H. Situ, Performance analysis of simultaneous dense coding protocol under decoherence. Quantum Inf. Process 16, 227 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.T. Barreiro, T. Wei, P.G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)

    Article  Google Scholar 

  10. M. Aili, A. Abulizi, Dense coding in a three-qubit heisenberg XXZ spin chain with three-site interactions. Int. J. Theor. Phys. 58, 364–371 (2018)

    Article  MATH  Google Scholar 

  11. X.M. Hu, Y. Guo, B.H. Liu, Y.F. Huang, C.F. Li, G.C. Guo, Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 4(7), eaat9304 (2018)

    Article  ADS  Google Scholar 

  12. Y.S. Zhou, F. Wang, M.X. Luo, Efficient superdense coding with W states. Int. J. Theor. Phys. 57(7), 1935–1941 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Pavicic, Deterministic mediated superdense coding with linear optics. Phys. Lett. A 380(8), 848–855 (2016)

    Article  ADS  MATH  Google Scholar 

  14. F. Wu, G. Yang, H. Wang, High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60(12), 1–7 (2017)

    Article  ADS  Google Scholar 

  15. J.T. Barreiro, N.K. Langford, N.A. Peters, P.G. Kwiat, Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95(26), 260501 (2005)

    Article  ADS  Google Scholar 

  16. E. Nagali, F. Sciarrino, F.D. Martini et al., Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013061 (2009)

    Article  Google Scholar 

  17. L. Chen, W. She, Sorting photons of different rotational doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement. Opt. Express 16, 14629–14634 (2008)

    Article  ADS  Google Scholar 

  18. Y. Hasegawa, R. Loidl, G. Badurek, Violation of a bell-like inequality in single-neutron interferometry. Nature 425, 45–48 (2003)

    Article  ADS  MATH  Google Scholar 

  19. E. Karimi, J. Leach, S. Slussarenko, Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 8250, 8932–8932 (2010)

    Google Scholar 

  20. J.M. Tang, Q.S. Zeng, Luo, et al., The relationship between single-particle commuting observables Lz, Sz entangled states and the spin–orbit coupling. Quantum Inf. Process. 19(1), 1–18 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Pramanik, S. Adhikari, A.S. Majumdar et al., Information transfer using a single particle path-spin hybrid entangled state. Phys. Lett. A 374, 1121–1125 (2010)

    Article  ADS  MATH  Google Scholar 

  22. M.Q. Ruan, J.Y. Zeng, Complete sets of commuting observables of greenberger-horne-zeilinger states. Phys. Rev. A 70, 218–221 (2004)

    Article  Google Scholar 

  23. M. Fiorentino, F.N.C. Wong, Deterministic controlled-NOT gate for single-photon two-qubit quantum logic. Phys. Rev. Lett. 93(7), 70502 (2004)

    Article  ADS  Google Scholar 

  24. J. Leach, M.J. Padgett, S.M. Barnett et al., Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002)

    Article  ADS  Google Scholar 

  25. R. Ionicioiu, I. D’Amico, Mesoscopic Stern-Gerlach device to polarize spin currents. Phys. Rev. B 67, 106–110 (2003)

    Article  Google Scholar 

  26. L. Zhou, Y.B. Sheng, G.L. Long, Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Article  Google Scholar 

  27. K. Ekert, Artur, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. T.J. Wang, T. Li, F.F. Du et al., High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 32–35 (2011)

    Google Scholar 

  29. D. Liu, J.L. Chen, W. Jiang, High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  30. S. Hassanpour, M. Houshmand, Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14, 739–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. D. Shen, W. Ma, M. Wang, X. Yin, Improvement of a controlled quantum secure direct communication protocol. Modern Phys. Lett. B 28(15), 1450121 (2014)

    Article  ADS  Google Scholar 

  32. G. Rigolin, Superdense coding using multipartite states. Physics (2004)

  33. A. Hillebrand, Superdense coding with GHZ and quantum key distribution with W in the ZX-calculus. Elec. Proce. Theor. Comp. Scien. 95, 103–121 (2012)

    Article  MATH  Google Scholar 

  34. P. Agrawal, A. Pati, Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)

    Article  ADS  Google Scholar 

  35. D. Saha, P.K. Panigrahi, N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZ–Bell channel. Quantum Inf. Process 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  36. W. Zhang, D. Ding, Y. Sheng et al., Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  37. Y.N. Sun, Z.D. Liu, J. Sun et al., experimental realization of dimension witnesses based on quantum state discrimination. Phys. Rev. A 94(5), 052313 (2016)

    Article  ADS  Google Scholar 

  38. L. Marrucci, E. Karimi, S. Slussarcnko et al., Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. UK 13, 064001 (2011)

    Article  ADS  Google Scholar 

  39. L. Marrucci, C. Manzo, D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006)

    Article  ADS  Google Scholar 

  40. W.Y. Feng, D.Z. Fu, Y.L. Wang et al., Survey on the methods of detecting the orbital angular momentum of a vortex beam. Phys. Exp. 39, 1–12 (2019)

    ADS  Google Scholar 

  41. W.D. Yang, X.D. Qiu, L.X. Chen, Research progress in detection, imaging, sensing, and micromanipulation application of orbital angular momentum of beams. Chin. J. Lasers 47(5), 216–232 (2020)

    Google Scholar 

  42. J.M. Tang, Q.S. Zeng, Y. Wu et al., Low-decoherence quantum information transmittal scheme based on the single-particle various degrees of freedom entangled states. Quantum Inf. Process. 19(10), 389 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. P. Saha, D. Sarkar, Robustness measure of hybrid intra-particle entanglement, discord, and classical correlation with initial werner state. Quantum. Inf. Process 15(2), 791–807 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge our colleagues at Nanjing University of Aeronautics and Astronautics (NUAA) for their discussion and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jiangmei Tang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zeng, Q., Feng, N. et al. Superdense coding based on intraparticle entanglement states. Eur. Phys. J. D 76, 172 (2022). https://doi.org/10.1140/epjd/s10053-022-00491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00491-7

Navigation