Skip to main content
Log in

The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum entanglement is a unique phenomenon which can be described in quantum mechanics. There are two categories of quantum entanglement: one is based on a single-body system in various freedom degrees and another is found in the multi-body system. In recent years, the spin–orbit coupling effect has been widely concerned. Various electronic devices based on the spin–orbit coupling effect have been emerging in an endless stream and bringing great practical application value. At present, the relationship between single-particle commuting observables \( l_{z} ,s_{z} \) entangled states and the spin–orbit coupling is rarely reported. In this paper, based on the diverse freedom degrees of the quantum entanglement states in a single-body system, the correlation between the sole particle commuting observables \( l_{z} ,s_{z} \) entangled states and the spin–orbit coupling has been analyzed by MATLAB software and the degree of entanglement is measured according to von Neumann entropy. This work provides innovation to further understand quantum entanglement and demonstrates that there is a close relationship between the degree of entanglement and the spin–orbit coupling coefficient \( {j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0pt} 2} - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4} \). As \( j \) increases, the degree of the maximum entanglement firstly decreases, then increases, afterward decreases and then increases repeatedly, with the maximum value of entanglement degree being 0.6828. When \( j \) is beyond 85.5, the degree of entanglement will not make sense any longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23(49), 152 (1935)

    MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Czachor, M.: Einstein–Podolsky–Rosen–Bohm experiment with relativistic massive particles. Phys. Rev. A 55(1), 72 (1997)

    ADS  Google Scholar 

  5. Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Maps for Lorentz transformations of spin. Phys. Rev. A 73(3), 032104 (2006)

    ADS  MathSciNet  Google Scholar 

  6. Korbicz, J.K., Lewenstein, M.: Group-theoretical approach to entanglement. Phys. Rev. A 74(2), 022318 (2006)

    ADS  MathSciNet  Google Scholar 

  7. Rauch, H., Werner, S.A.H.: Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement, vol. 20. Oxford University Press, Oxford (2015)

    MATH  Google Scholar 

  8. Putz, M.V., Ori, O.: Bondonic Chemistry: Physical Origins and Entanglement Prospects Exotic Properties of Carbon Nanomatter, vol. 229. Springer, Dordrecht (2015)

    Google Scholar 

  9. Bal, P.: Physics of life: the dawn of quantum biology. Nat. News 474(7351), 272 (2011)

    Google Scholar 

  10. Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9(1), 10 (2013)

    Google Scholar 

  11. Cai, J.: Quantum biology: explore quantum dynamics in biological systems. Sci. China Inf. Sci. 59(8), 081302 (2016)

    Google Scholar 

  12. Timco, G.A., Carretta, S., Troiani, F., Tuna, F., Pritchard, R.J., Muryn, C.A., Amoretti, G.: Engineering the coupling between molecular spin qubits by coordination chemistry. Nat. Nanotechnol. 4(3), 173 (2009)

    ADS  Google Scholar 

  13. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    ADS  Google Scholar 

  16. Caban, P., Rembieliński, J.: Lorentz-covariant reduced spin density matrix and Einstein–Podolsky–Rose–Bohm correlations. Phys. Rev. A 72(1), 012103 (2005)

    ADS  Google Scholar 

  17. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172 (2015)

    ADS  MATH  Google Scholar 

  18. Brukner, Č., Żukowski, M., Pan, J.W., Zeilinger, A.: Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett. 92, 127901 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Bovino, F.A., Giardina, M., Svozil, K., Vedral, V.: Spatial orientation by quantum telepathy. Int. J. Quantum Inf. 5, 43 (2007)

    Google Scholar 

  20. Venzl, H., Freyberger, M.: Quantum estimation of a damping constant. Phys. Rev. A 75(4), 042322 (2007)

    ADS  Google Scholar 

  21. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330 (2004)

    ADS  Google Scholar 

  22. Jozsa, R., Abrams, D.S., Dowling, J.P., Williams, C.P.: Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett. 85(9) (2010)

    ADS  Google Scholar 

  23. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    ADS  Google Scholar 

  24. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46 (2001)

    ADS  Google Scholar 

  25. Li, Q.T.: Theory and application of quantum entanglement measures. Ph.D. Thesis, Tsinghua University (2017)

  26. Knight, P.: Quantum mechanics: where the weirdness comes from. Nature 395(6675), 12 (1998)

    ADS  Google Scholar 

  27. Vedral, V.: Quantifying entanglement in macroscopic systems. Nature 453(7198), 1004 (2008)

    ADS  Google Scholar 

  28. Monroe, C., Meekhof, D.M., King, B.E., Wineland, D.J.: A “Schrödinger cat” superposition state of an atom. Science 272(5265), 1131–1136 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Ruan, M.Q., Zeng, J.Y.: Complete sets of commuting observables of Greenberger–Horne–Zeilinger states. Phys. Rev. A 70(5), 052113 (2004)

    ADS  Google Scholar 

  30. Bittencourt, V.A., Bernardini, A.E.: Entanglement of Dirac bi-spinor states driven by Poincaré classes of SU (2) ⊗ SU (2) coupling potentials. Ann. Phys. 364, 182 (2016)

    ADS  MATH  Google Scholar 

  31. Souza, F.M., Oliveira, P.A., Sanz, L.: Quantum entanglement driven by electron-nanomechanical coupling. arXiv:1804.01123

  32. Slepyan, G., Boag, A., Mordachev, V., Sinkevich, E., Maksimenko, S., Kuzhir, P., Maffucci, A.: Anomalous electromagnetic coupling via entanglement at the nanoscale. New J. Phys. 19(2), 023014 (2017)

    ADS  Google Scholar 

  33. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045 (2010)

    ADS  Google Scholar 

  34. Qi, X.L., Zhang, S.C.: The quantum spin Hall effect and topological insulators (2010). arXiv:1001.1602

    Google Scholar 

  35. Qi, X.L., Zhang, S.C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011)

    ADS  Google Scholar 

  36. Zhang, N.: The magnetoelectric transport properties and spin dynamics at the oxide interfaces. Ph.D. Thesis, Lanzhou University (2017)

  37. Cui, J.X.: Quantum effect in ultracold spin–orbit coupled atomic fermi gases and applications. Ph.D. Thesis, Tsinghua University (2013)

  38. Zeng, J.Y.: Quantum Mechanics Tutorial, vol. 150. Science Press, Berlin (2014)

    Google Scholar 

  39. Wang, R.: Reseaches on quantum nonlocality and contextuality by weak microwave signal detection. Ph.D. Thesis, Southwest Jiaotong University (2017)

  40. Nakagawa, K.: Entanglement entropies of coupled harmonic oscillators. arXiv:1601.03584

  41. Paškauskas, R., You, L.: Quantum correlations in two-boson wave functions. Phys. Rev. A 64(4), 042310 (2001)

    ADS  Google Scholar 

  42. Xiang, L., De-Wei, W., Xi, W., Qiang, M., Kun, C., Chun-Yan, Y.: A method of evaluating the quality of dual-path entangled quantum microwave signal generated based on von Neumann entropy. Acta Phys. Sin. 65(11) (2016)

  43. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    ADS  MATH  Google Scholar 

  44. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57(3), 1619 (1998)

    ADS  Google Scholar 

  46. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)

    ADS  Google Scholar 

  47. Cheng, P.X.: Study on purification of entanglement and local distinguishability of orthogonal quantum states. Ph.D. Thesis. 14, National University of Defense Technology (2003)

  48. Bernardini, A.E., Mizrahi, S.S.: Relativistic dynamics compels a thermalized fermi gas to a unique intrinsic parity eigenstate. Phys. Scr. 89(7), 075105 (2014)

    ADS  Google Scholar 

  49. Sadiek, G., AlDrees, W., Abdallah, M.S.: Manipulation of two quantum systems through their mutual interaction in presence of a radiation field. arXiv:1802.01935

  50. Sun, S.H.: Basic concept of von Neumann entropy. Educ. Teach. Forum 43, 279 (2016)

    Google Scholar 

  51. Feng, C.: Study about five-fold-degenerate point of spin-2. Ph.D. Thesis. 1, Nanjing University (2019)

Download references

Acknowledgements

The authors would like to thank the library of Nanjing University of Aeronautics and Astronautics (NUAA) offering sufficient materials for us to study this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Sheng Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JM., Zeng, QS., Luo, YB. et al. The relationship between single-particle commuting observables lz, sz entangled states and the spin–orbit coupling. Quantum Inf Process 19, 40 (2020). https://doi.org/10.1007/s11128-019-2537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2537-6

Keywords

Navigation