Skip to main content
Log in

Dipole and generalized oscillator strengths-dependent electronic properties of helium atoms immersed in a plasma

  • Regular Article – Atomic Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Atoms subjected to extreme environmental conditions are of fundamental importance due to the modification of their electronic properties. In this work, we study the helium atom when immersed in a plasma environment. In order to describe the plasma medium, we use two models when solving the Schrödinger equation in a restricted Hartree–Fock approach: the Debye–Hückel screened (DHS) potential and a more general exponential-cosine screened Coulomb (ECSC) potential. The plasma length parameter, \(\lambda \), in both model potentials characterizes the plasma screening effects which cause an increase or decrease in the electronic properties of the helium atom. We report results for the total electronic ground state energy, orbital energy, dipole oscillator strengths, generalized oscillator strengths (GOS), mean excitation energy, electrostatic dipole polarizability, and electronic stopping cross section. We find that the ECSC plasma model produces a less bound system than the DHS plasma model at the same value of the screening length, \(\lambda \). However, the ECSC model potential has a stronger dipole transition from the 1s to the 2p and 3p states than the DHS model potential. Also, the ECSC potential predicts a higher static dipole polarizability than the DHS model potential, with a consequent lower mean excitation energy. We also find a larger GOS for the ECSC than for the DHS for the same momentum transfer at the same value of the screening length, \(\lambda \). Consequently, the ECSC mode potential produces a larger electronic stopping cross section than the DHS for the same \(\lambda \) and projectile velocity. In the limit of \(\lambda \rightarrow \infty \), we have excellent agreement with the free helium properties. These quantitative values for the electronic properties would be useful for the investigations of the atomic structure and collisions of helium atoms immersed in plasmas.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. R.K. Janev, S. Zhang, J. Wang, Review of quantum collision dynamics in debye plasmas. Matt. Rad. Extrem. 1, 237–248 (2016)

    Article  Google Scholar 

  2. G.J. Hatton, N.F. Lane, J.C. Weisheit, Inelastic electron-ion scattering in a dense plasma. J. Phys. B: At. Mol. Phys. 14(24), 4879–4888 (1981)

    Article  ADS  Google Scholar 

  3. N.C. Deb, N.C. Sil, Electron impact excitation of positive ions in dense plasma. J. Phys. B At. Mol. Phys. 17(17), 3587–3591 (1984)

    Article  ADS  Google Scholar 

  4. D. Salzmann, J. Stein, I.B. Goldberg, R.H. Pratt, Effect of nearest-neighbor ions on excited ionic states, emission spectra, and line profiles in hot and dense plasmas. Phys. Rev. A 44, 1270–1280 (1991)

    Article  ADS  Google Scholar 

  5. F.A. Gutierrez, J. Diaz-Valdes, Effects of non-spherical screening for inelastic electron-ion scattering. J. Phys. B At. Mol. Opt. Phys. 27(3), 593–600 (1994)

    Article  ADS  Google Scholar 

  6. R. Brandenburg, J. Schweinzer, S. Fiedler, F. Aumayr, H.P. Winter, Modelling of fast neutral li beams for fusion edge plasma diagnostics. Plasma Phys. Controll. Fusion 41(4), 471–484 (1999)

  7. L.B. Zhao, Y.K. Ho, Influence of plasma environments on photoionization of atoms. Phys. Plasmas 11(4), 1695–1700 (2004)

    Article  ADS  Google Scholar 

  8. W. Hong, Y.-D. Jung, Plasma-screening effects on direct 1s\(\rightarrow \)2p\(^\pm \) electron-ion collisional excitation rates in dense plasmas. Phys. Plasmas 3(6), 2457–2460 (1996)

    Article  ADS  Google Scholar 

  9. J.-S. Yoon, Y.-D. Jung, Spherical versus nonspherical plasma-screening effects on semiclassical electron-ion collisional excitations in weakly coupled plasmas. Phys. Plasmas 3(9), 3291–3296 (1996)

    Article  ADS  Google Scholar 

  10. U. Gupta, A.K. Rajagopal, Density functional formalism at finite temperatures with some applications. Phys. Rep. 87(6), 259–311 (1982)

    Article  ADS  Google Scholar 

  11. B.L. Whitten, N.F. Lane, J.C. Weisheit, Plasma-screening effects on electron-impact excitation of hydrogenic ions in dense plasmas. Phys. Rev. A 29, 945–952 (1984)

    Article  ADS  Google Scholar 

  12. M. Flannery, E. Oks, Plasma screening within rydberg atoms in circular states. Eur. Phys. J. D 47, 27 (2008)

    Article  ADS  Google Scholar 

  13. L. Liu, J.G. Wang, R.K. Janev, Dynamics of \({\rm he}^{2+}+{\rm H}(1s)\) excitation and electron-capture processes in debye plasmas. Phys. Rev. A 77, 032709 (2008)

    Article  ADS  Google Scholar 

  14. L. Liu, J.G. Wang, R.K. Janev, Dynamics of \({\rm he}^{2+}+{\rm H}(1s)\) ionization with screened coulomb interactions. Phys. Rev. A 77, 042712 (2008)

    Article  ADS  Google Scholar 

  15. M.S. Pindzola, S.D. Loch, J. Colgan, C.J. Fontes, Electron-impact ionization of atoms in high-temperature dense plasmas. Phys. Rev. A 77, 062707 (2008)

    Article  ADS  Google Scholar 

  16. A.C.H. Yu, Y.K. Ho, Stark shifts and widths of a hydrogen atom in debye plasmas. Phys. Plasmas 12(4), 043302 (2005)

    Article  ADS  Google Scholar 

  17. S. Sahoo, Y.K. Ho, Photoionization of li and na in debye plasma environments. Phys. Plasmas 13(6), 063301 (2006)

    Article  ADS  Google Scholar 

  18. S. Kar, Y.K. Ho, Photodetachment of the hydrogen negative ion in weakly coupled plasmas. Phys. Plasmas 15(1), 013301 (2008)

    Article  ADS  Google Scholar 

  19. S. Paul, Y.K. Ho, Effects of debye plasmas on two-photon transitions in lithium atoms. Phys. Rev. A 78, 042711 (2008)

    Article  ADS  Google Scholar 

  20. E. Hückel, P. Debye, The theory of electrolytes: I. Lowering of freezing point and related phenomena. Phys. Z 24, 185–206 (1923)

    Google Scholar 

  21. P.K. Shukla, B. Eliasson, Screening and wake potentials of a test charge in quantum plasmas. Phys. Lett. A 372(16), 2897–2899 (2008)

    Article  ADS  MATH  Google Scholar 

  22. B. Saha, T.K. Mukherjee, P.K. Mukherjee, G.H.F. Diercksen, Variational calculations for the energy levels of confined two-electron atomic systems. Theoret. Chem. Acc. 108(5), 305–310 (2002)

    Article  Google Scholar 

  23. S. Kar, Y.K. Ho, Bound states of helium atom in dense plasmas. Int. J. Quant. Chem. 106, 814–822 (2006)

    Article  ADS  Google Scholar 

  24. A. Ghoshal, Y.K. Ho, Ground states of helium in exponential-cosine-screened coulomb potentials. J. Phys. B Atomic Mol. Opt. Phys. 42, 075002 (2009)

    Article  ADS  Google Scholar 

  25. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, P.K. Mukherjee, \(^{1,3}d^o\) and \(^{1,3}p^e\) states of two electron atoms under debye plasma screening. J. Quant. Spectrosc. Radiat. Transf. 111(5), 675–688 (2010)

    Article  ADS  Google Scholar 

  26. M.C. Zammit, D.V. Fursa, I. Bray, R.K. Janev, Electron-helium scattering in debye plasmas. Phys. Rev. A 84, 052705 (2011)

    Article  ADS  Google Scholar 

  27. M.C. Zammit, D.V. Fursa, I. Bray, Electron scattering in a helium debye plasma. Chem. Phys. 398, 214–220 (2012)

    Article  Google Scholar 

  28. S. Kar, Y. Wang, Z. Jiang, S. Li, K. Ratnavelu, Doubly-excited 1,3de resonance states of two-electron positive ions li+ and be2+ in debye plasmas. Phys. Plasmas 21(1), 012105 (2014)

    Article  ADS  Google Scholar 

  29. H. Xiao-Qing, Y. Wang, Z. Jiang, P. Jiang, S. Kar, Doubly excited 3pe resonance states of two-electron positive ions in debye plasmas. Phys. Plasmas 22(11), 112107 (2015)

    Article  ADS  Google Scholar 

  30. Y.-C. Lin, C.-Y. Lin, Y.K. Ho, Spectral/structural data of helium atoms with exponential-cosine-screened coulomb potentials. Int. J. Quantum Chem. 115(13), 830–836 (2015)

    Article  Google Scholar 

  31. Y.-C. Lin, T.-K. Fang, Y.K. Ho, Quantum entanglement for helium atom in the debye plasma. Phys. Plasmas 2(3), 32113 (2015)

    Article  Google Scholar 

  32. K.D. Sen, J. Katriel, H.E. Montgomery, A comparative study of two-electron systems with screened coulomb potentials. Ann. Phys. 397, 192–212 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. H.E. Montgomery, K.D. Sen, J. Katriel, Critical screening in the one- and two-electron yukawa atoms. Phys. Rev. A 97, 022503 (2018)

    Article  ADS  Google Scholar 

  34. S. Kar, Y.-S. Wang, Y.K. Ho, Critical stability for two-electron ions with yukawa potentials and varying \(z\). Phys. Rev. A 99, 042514 (2019)

    Article  ADS  Google Scholar 

  35. Z. Wang, P. Winkler, Pair-function calculations for two-electron systems in model plasma environments. Phys. Rev. A 52, 216–220 (1995)

    Article  ADS  Google Scholar 

  36. P.K. Mukherjee, J. Karwowski, G.H.F. Diercksen, On the influence of the debye screening on the spectra of two-electron atoms. Chem. Phys. Lett. 363(3), 323–327 (2002)

    Article  ADS  Google Scholar 

  37. S. Sen, P. Mandal, P.K. Mukherjee, B. Fricke, Hyperpolarizabilities of one and two electron ions under strongly coupled plasma. Phys. Plasmas 20(1), 013505 (2013)

    Article  ADS  Google Scholar 

  38. P. Jiang, S. Kar, Y. Zhou, Doubly-excited states of two-electron systems in lorentzian astrophysical plasmas. Few-Body Syst. 54(11), 1911–1919 (2018)

    Article  ADS  Google Scholar 

  39. S.K. Chaudhuri, P.K. Mukherjee, B. Fricke, Hyperpolarizability of two electron atoms under exponential cosine screened coulomb potential. Phys. Plasmas 22(12), 123120 (2015)

    Article  ADS  Google Scholar 

  40. S. Kar, Y.-S. Wang, Y. Wang, Z. Jiang, Tune-out wavelengths for helium atom in plasma environments. Phys. Plasmas 23(8), 82119 (2016)

    Article  Google Scholar 

  41. M.K. Bahar, A. Soylu, Confinement control mechanism for two-electron hulthen quantum dots in plasmas. J. Phys. B At. Mol. Opt. Phys. 51(10), 105701 (2018)

    Article  ADS  Google Scholar 

  42. M.K. Bahar, A. Soylu, Laser-driven two-electron quantum dot in plasmas. Phys. Plasmas 25(6), 062113 (2018)

    Article  ADS  Google Scholar 

  43. M.K. Bahar, A. Soylu, Two-electrons quantum dot in plasmas under the external fields. Phys. Plasmas 25(2), 022106 (2018)

    Article  ADS  Google Scholar 

  44. Z.-B. Chen, K. Ma, H. Hong-Wei, K. Wang, Relativistic effects on the energy levels and radiative properties of he-like ions immersed in debye plasmas. Phys. Plasmas 25(7), 72120 (2018)

    Article  Google Scholar 

  45. S. Kar, Y.K. Ho, Oscillator strengths and polarizabilities of the hot-dense plasma-embedded helium atom. J. Quant. Spectrosc. Radiat. Transf. 109(3), 445–452 (2008)

    Article  ADS  Google Scholar 

  46. S. Kar, Y.K. Ho, Multipole polarizabilities of helium and the hydrogen negative ion with coulomb and screened coulomb potentials. Phys. Rev. A 80, 062511 (2009)

    Article  ADS  Google Scholar 

  47. Y.Y. Qi, J.G. Wang, R.K. Janev, Static dipole polarizability of hydrogenlike ions in debye plasmas. Phys. Rev. A 80, 032502 (2009)

    Article  ADS  Google Scholar 

  48. Z. Jiang, S. Kar, Y.K. Ho, Polarizabilities of two-electron positive ions with screened coulomb potentials. Phys. Rev. A 84, 012504 (2011)

    Article  ADS  Google Scholar 

  49. L.-N. Ning, Y.-Y. Qi, Static electric dipole polarizability of lithium atoms in debye plasmas. Chin. Phys. B 21(12), 123201 (2012)

    Article  ADS  Google Scholar 

  50. S. Kar, Y.-S. Wang, Y. Wang, Y.K. Ho, Polarizability of negatively charged helium-like ions interacting with coulomb and screened coulomb potentials. Int. J. Quant. Chem. 118(7), 25515 (2018)

    Article  Google Scholar 

  51. S.N. Ketkar, R.A. Bonham, Experimental determination of the moments of the generalized oscillator strength distribution of he. J. Chem. Phys. 84(11), 6091–6094 (1986)

    Article  ADS  Google Scholar 

  52. A.K. Bhatia, R.J. Drachman, Properties of two-electron systems in an electric field. Can. J. Phys. 75(1), 11–18 (1997)

    Article  ADS  Google Scholar 

  53. Plasma Science Committee, (ed.). Plasma Science : From Fundamental Research to Technological Applications. National Academies Press, Washington, D.C., 1st edn, (1995)

  54. A.N. Sil, S. Canuto, P.K. Mukherjee, Spectroscopy of confined atomic systems: Effect of plasma. Adv. Quant. Chem. 58, 115–175 (2009)

    Article  Google Scholar 

  55. Y.Y. Qi, J.G. Wang, R.K. Janev, Photoionization of hydrogen-like ions in dense quantum plasmas. Phys. Plasm. 24, 062110 (2017)

    Article  ADS  Google Scholar 

  56. L. Guang, J.L. Rong, Z.L. Zhu, J. Ma, Y.K. Ho, Accurate computation of screened coulomb potential integrals in numerical hartree-fock programs. Comput. Phys. Commun. 224, 217–227 (2019)

    MathSciNet  Google Scholar 

  57. R. Cabrera-Trujillo, S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A 87, 012502 (2013)

    Article  ADS  Google Scholar 

  58. C. Martínez-Flores, R. Cabrera-Trujillo, Dipole and generalized oscillator strength derived electronic properties of an endohedral hydrogen atom embedded in a debye-hückel plasma. Matter Radiat. Extremes 3(5), 227–242 (2018)

    Article  Google Scholar 

  59. C. Martínez-Flores, R. Cabrera-Trujillo, Dipole sum rules of a hydrogen atom in a debye-hückel plasma. Eur. Phys. J. D 73, 191 (2019)

    Article  ADS  Google Scholar 

  60. C. Martínez-Flores, Generalized oscillator strengths for the ground state [2p63s]2s of sodium atom embedded in a plasma medium. Chem. Phys. 535, 110759 (2020)

    Article  Google Scholar 

  61. H.A. Bethe, R. Jackiw (eds.), Intermediate Quantum Mechanics, 3rd edn. (Westview Press, New York, 1997)

    Google Scholar 

  62. H. Bethe, Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Ann. Phys. 397(3), 325–400 (1930)

    Article  MATH  Google Scholar 

  63. M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules-the bethe theory revisited. Rev. Mod. Phys. 43, 297–347 (1971)

    Article  ADS  Google Scholar 

  64. H. Friedrich, Theoretical Atomic Physics, 3rd edn. (Springer-Verlag, Berlin, 2006)

    MATH  Google Scholar 

  65. J. Oddershede, J.R. Sabin, Orbital and whole-atom proton stopping power and shell corrections for atoms with z\(leq\)36. At. Data Nucl. Data Tables 31(2), 275–297 (1984)

    Article  ADS  Google Scholar 

  66. L.U. Ancarani, K.V. Rodriguez, Correlated expansions of \(n^{1}s\) and \(n^{3}s\) states for two-electron atoms in exponential cosine screened potentials. Phys. Rev. A 89, 012507 (2014)

    Article  ADS  Google Scholar 

  67. T.D. Young, R. Vargas, J. Garza, A Hartree-Fock study of the confined helium atom: local and global basis set approaches. Phys. Lett. A 380, 712–717 (2016)

    Article  ADS  Google Scholar 

  68. A.F. Duarte-Alcaráz, M.A. Martínez-Sánchez, M. Rivera-Almazo, R. Vargas, R.A. Rosas-Burgos, J. Garza, Testing one-parameter hybrid exchange functionals in confined atomic systems. J. Phys. B At. Mol. Opt. Phys. 52, 135002 (2019)

    Article  ADS  Google Scholar 

  69. A.W. King, A.L. Baskerville, H. Cox, Hartree-fock implementation using a laguerre-based wave function for the ground state and correlation energies of two-electron atoms. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2115), 20170153 (2018)

    Article  ADS  Google Scholar 

  70. I. Nasser, M. Zeama, A. Abdel-Hady, The nonadditive entropy for the ground state of helium-like ions using hellmann potential. Mol. Phys. 118(3), 1612105 (2020)

    Article  ADS  Google Scholar 

  71. M. Zeama, I. Nasser, Tsallis entropy calculation for non-coulombic helium. Physica A 528, 121468 (2019)

    Article  Google Scholar 

  72. C. Martínez-Flores, The information theory of the helium atom in screened coulomb potentials. Int. J. Quant. Chem. 5, 26529 (2020)

    Google Scholar 

  73. J. Li, N.D. Drummond, P. Schuck, V. Olevano, Comparing many-body approaches against the helium atom exact solution. SciPost Phys. 6, 40 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  74. A.W. Weiss, Oscillator strengths for the helium isoelectronic sequence. J. Res. Notl. Bureau Stand. A Phys. Chem. 71, 163 (1967)

    Article  Google Scholar 

  75. Y.-K. Kim, M. Inokuti, Generalized oscillator strengths of the helium atom. i. Phys. Rev. 175, 176–188 (1968)

    Article  ADS  Google Scholar 

  76. K.Z. Xu, R.F. Feng, S.L. Wu, Q. Ji, X.J. Zhang, Z.P. Zhong, Y. Zheng, Absolute generalized oscillator strengths of \(2^{1}\)s and \(2^{1}\)p excitations of helium measured by angle-resolved electron-energy-loss spectroscopy. Phys. Rev. A 53, 3081–3086 (1996)

    Article  ADS  Google Scholar 

  77. J. Mitroy, M.S. Safronova, C.W. Clark, Theory and applications of atomic and ionic polarizabilities. J. Phys. B 43(20), 202001 (2010)

    Article  ADS  Google Scholar 

  78. J. L. Dehmer, Mitio. Inokuti, R. P. Saxon, Systematics of moments of dipole oscillator-strength distributions for atoms of the first and second row. Phys. Rev. A, 12:102–121, (Jul 1975)

  79. P. Schwerdtfeger, J.K. Nagle, 2018 table of static dipole polarizabilities of the neutral elements in the periodic table. Mol. Phys. 5, 1–26 (2018)

    Google Scholar 

  80. H. Baumgart, W. Arnold, H. Berg, E. Huttel, G. Clausnitzer, Proton stopping powers in various gases. Nucl. Instrum. Methods Phys. Res. 204(2), 597–604 (1983)

    Article  ADS  Google Scholar 

  81. F. Besenbacher, H.H. Andersen, P. Hvelplund, H. Knudsen, Stopping power of swift hydrogen and helium ions in gases. Matematisk-Fysiske Meddelelser 40(3), 1–39 (1979)

    Google Scholar 

  82. H.K. Reynolds, D.N.F. Dunbar, W.A. Wenzel, W. Whaling, The stopping cross section of gases for protons, 30–600 kev. Phys. Rev. 92, 742–748 (1953)

    Article  ADS  Google Scholar 

  83. J.E. Brolley, F.L. Ribe, Energy loss by 8.86-mev deuterons and 4.43-mev protons. Phys. Rev. 98, 1112–1117 (1955)

    Article  ADS  Google Scholar 

  84. G. Reiter, N. Kniest, E. Pfaff, G. Clausnitzer, Proton and helium stopping cross sections in h2, he, n2, o2, ne, ar, kr, xe, ch4 and co2. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 44(4), 399–411 (1990)

    Article  ADS  Google Scholar 

  85. R. Golser, D. Semrad, Observation of a striking departure from velocity proportionality in low-energy electronic stopping. Phys. Rev. Lett. 66, 1831–1833 (1991)

    Article  ADS  Google Scholar 

  86. F. Raiola, G. Gyürky, M. et al., Aliotta. Stopping power of low-energy deuterons in 3he gas. Eur. Phys. J. A Hadrons Nuclei 10, 478–491 (2001)

  87. A. Schiefermüller, R. Golser, R. Stohl, D. Semrad, Energy loss of hydrogen projectiles in gases. Phys. Rev. A 48, 4467–4475 (1993)

    Article  ADS  Google Scholar 

  88. D. Jedrejcic, U. Greife, Energy loss of low energy hydrogen and helium ions in light gases. Nucl. Instrum. Methods Phys. Res. Sect. B 428, 1–8 (2018)

    Article  ADS  Google Scholar 

  89. S. Qin, C. Chan, J. Browning, S. Meassick, Charge transfer cross section of he+ in collisional helium plasma using the plasma immersion ion implantation technique. J. Appl. Phys. 74(3), 1548–1552 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.F.-C. thanks CONACyT for the postdoctoral fellowship through the project FC-2016/2412 as well as to the hospitality of the Chemistry Department at UAM-I. R.C.-T. gratefully acknowledges support from DGAPA-PAPIIT IN-111-820 as well as to DGAPA-PASPA program for the sabbatical year at the University of Heidelberg where this work was partially realized.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the theory, coding, and preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to César Martínez-Flores.

Additional information

Topical Issue: Atoms and Molecules in a Confined Environment. Guest editors: C.N. Ramachandran, Vincenzo Aquilanti, Henry Ed Montgomery, N. Sathyamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Flores, C., Cabrera-Trujillo, R. Dipole and generalized oscillator strengths-dependent electronic properties of helium atoms immersed in a plasma. Eur. Phys. J. D 75, 133 (2021). https://doi.org/10.1140/epjd/s10053-021-00146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00146-z

Navigation