Skip to main content
Log in

Monte-Carlo study of the effect of small admixture of iron atoms on the energy absorbed by solid disordered neon irradiated by near-Fe1s-threshold photons

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Energy absorption processes in iron-doped solid disordered neon under photon irradiation are studied by Monte Carlo simulation with accurate accounting for the processes of the cascade decay of vacancies in the electron shells of ionized atoms. Cascade decay processes of ionized atoms in matter under ionizing radiation are demonstrated to be a crucial factor in the mechanisms of energy absorption in irradiated samples. Small (0.25–4%) admixtures of iron atoms to solid neon samples lead to noticeable enhancement of energy absorption in a sample (1.2–2.7 times) at incident photon energies exceeding Fe1s ionization threshold. Since the neon atom is isoelectronic with H2O, this effect may well be expected in tissues of organisms under ionizing radiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Brühl, A.G. Kochur, J. Phys. B: At. Mol. Opt. Phys. 43, 105002 (2010)

    Article  ADS  Google Scholar 

  2. S. Brühl, A.G. Kochur, J. Phys. B: At. Mol. Opt. Phys. 45, 135003 (2012)

    Article  ADS  Google Scholar 

  3. A.G. Kochur, A.P. Chaynikov, V.A. Yavna, Eur. Phys. J. D 71, 282 (2017)

    Article  ADS  Google Scholar 

  4. A.G. Kochur, A.I. Dudenko, V.L. Sukhorukov, I.D. Petrov, J. Phys. B.: At. Mol. Opt. Phys. 27, 1709 (1994)

    Article  ADS  Google Scholar 

  5. A.G. Kochur, V.L. Sukhorukov, A.I. Dudenko, P.V. Demekhin, J. Phys. B.: At. Mol. Opt. Phys. 28, 387 (1995)

    Article  ADS  Google Scholar 

  6. R. Kau, I.D. Petrov, V.L. Sukhorukov, Z. Phys. D 39, 267 (1997)

    Article  ADS  Google Scholar 

  7. C. Wälzlein, E. Scifoni, M. Krämer, M. Durante, Phys. Med. Biol. 59, 1441 (2014)

    Article  Google Scholar 

  8. F. Vernimmen, M.L. Shmatov, J. Biomater. Nanobiotechnol. 6, 204 (2015)

    Article  Google Scholar 

  9. M.L. Shmatov, PEPAN Lett. 13, 808 (2016)

    Google Scholar 

  10. M.A. Dolgopolov, I.V. Kopytin, Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Ser. Phys. Math. 1, 5 (2010)

    Google Scholar 

  11. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph. Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Cooperman, M.A. Cortés-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Guèye, P. Gumplinger, A.S. Howard, I. Hrivnácová, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tomé, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Nucl. Instr. Meth. Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  12. J. Sempau, J.M. Fernandez-Varea, E. Acosta, F. Salvat, Nucl. Instr. Meth. Phys. Res. B 207, 107 (2003)

    Article  ADS  Google Scholar 

  13. C. Wälzlein, M. Krämer, E. Scifoni, M. Durante, Nucl. Instr. Meth. Phys. Res. B 320, 75 (2014)

    Article  ADS  Google Scholar 

  14. A.G. Kochur, A.P. Chaynikov, V.A. Yavna, Eur. Phys. J. D 70, 70 (2016)

    Article  ADS  Google Scholar 

  15. V.L. Sukhorukov, V.F. Demekhin, V.V. Timoshevskaya, S.V. Lavrentiev, Opt. Spectrosc. (USSR) 47, 228 (1979)

    ADS  Google Scholar 

  16. A.P. Chaynikov, A.G. Kochur, V.A. Yavna, Opt. Spectrosc. 119, 171 (2015)

    Article  ADS  Google Scholar 

  17. G.A. Kalinchenko, I.G. Ivanov, M.F. Sem, A.G. Kochur, V.L. Sukhorukov, J. Phys. D: Appl. Phys. 31, 50 (1998)

    Article  ADS  Google Scholar 

  18. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (version 1.5), 1 February 2018 , (National Institute of Standards and Technology, Gaithersburg, MD, 2010) Available: http://physics.nist.gov/xcom

  19. V.L. Sukhorukov, A.I. Dudenko, M.E. Vasil’eva, A.P. Dement’ev Izv, Akad. Nauk SSSR. Ser. Fiz. (USSR) 55, 2472 (1991)

    Google Scholar 

  20. E. Scifoni, E. Surdutovich, A. V.Solov’yov, Phys. Rev. E 81, 021903 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei G. Kochur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochur, A.G., Chaynikov, A.P. & Yavna, V.A. Monte-Carlo study of the effect of small admixture of iron atoms on the energy absorbed by solid disordered neon irradiated by near-Fe1s-threshold photons. Eur. Phys. J. D 73, 80 (2019). https://doi.org/10.1140/epjd/e2019-90185-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-90185-2

Keywords

Navigation