Skip to main content
Log in

Universally-composable finite-key analysis for efficient four-intensity decoy-state quantum key distribution

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We propose an efficient four-intensity decoy-state BB84 protocol and derive concise security bounds for this protocol with the universally composable finite-key analysis method. Comparing with the efficient three-intensity protocol, we find that our efficient four-intensity protocol can increase the secret key rate by at least 30%. Particularly, this increasing rate of secret key rate will be raised as the transmission distance increases. At a large transmission distance, our efficient four-intensity protocol can improve the performance of quantum key distribution profoundly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Shannon, Bell System Technical Journal 28, 656 (1949)

    Article  MathSciNet  Google Scholar 

  2. C.H. Bennett, G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York, 1984), pp. 175–179

  3. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. H.K. Lo, H.F. Chau, Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  5. P.W. Shor, J. Preskill, Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  6. D. Mayers, J. ACM (JACM) 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  7. R. Renner, N. Gisin, B. Kraus, Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  8. G. Brassard, N. Lütkenhaus, T. Mor, B.C. Sanders, Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  9. N. Lütkenhaus, M. Jahma, New J. Phys. 4, 44 (2002)

    Article  Google Scholar 

  10. W.Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  11. X.B. Wang, Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  12. H.K. Lo, X.F. Ma, K. Chen, Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  13. M. Hayashi, R. Nakayama, New J. Phys. 16, 063009 (2014)

    Article  ADS  Google Scholar 

  14. C.C.W. Lim, M. Curty, N. Walenta, F. Xu, H. Zbinden, Phys. Rev. A 89, 022307 (2014)

    Article  ADS  Google Scholar 

  15. M. Tomamichel, R. Renner, Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  16. M. Tomamichel, C.C.W. Lim, N. Gisin, R. Renner, Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  17. X.B. Wang, Phys. Rev. A 72, 012322 (2005)

    Article  ADS  Google Scholar 

  18. M. Hayashi, New J. Phys. 9, 284 (2007)

    Article  ADS  Google Scholar 

  19. Y.H. Zhou, Z.W. Yu, X.B. Wang, Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  20. Z.W. Yu, Y.H. Zhou, X.B. Wang, arXiv:1509.04011 (2015)

  21. R.Y.Q. Cai, V. Scarani, New J. Phys. 11, 045024 (2009)

    Article  ADS  Google Scholar 

  22. X.F. Ma, B. Qi, Y. Zhao, H.K. Lo, Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  23. Z. Wei, W. Wang, Z. Zhang, M. Gao, Z. Ma, X.F. Ma, Sci. Rep. 3, 2453 (2013)

    Article  ADS  Google Scholar 

  24. M. Lucamarini, K.A. Patel, J.F. Dynes, B. Fröhlich, A.W. Sharpe, A.R. Dixon, Z.L. Yuan, R.V. Penty, A.J. Shields, Opt. Express 21, 24550 (2013)

    Article  ADS  Google Scholar 

  25. H.K. Lo, H.F. Chau, M. Ardehali, J. Cryptol. 18, 133 (2005)

    Article  Google Scholar 

  26. B. Korzh, C.C.W. Lim, R. Houlmann, N. Gisin, M.J. Li, D. Nolan, B. Sanguinetti, R. Thew, H. Zbinden, Nat. Phot. 9, 163 (2015)

    Article  Google Scholar 

  27. B. Fröhlich, J.F. Dynes, M. Lucamarini, A.W. Sharpe, Z.L. Yuan, A.J. Shields, Nature 501, 69 (2013)

    Article  ADS  Google Scholar 

  28. N. Walenta, T. Lunghi, O. Guinnard, R. Houlmann, H. Zbinden, N. Gisin, J. Appl. Phys. 112, 063106 (2012)

    Article  ADS  Google Scholar 

  29. X.F. Ma, C.H.F. Fung, M. Razavi, Phys. Rev. A 86, 052305 (2012)

    Article  ADS  Google Scholar 

  30. M. Curty, F. Xu, W. Cui, C.C.W. Lim, K. Tamaki, H.K. Lo, Nat. Commun. 5, 3732 (2014)

    Article  ADS  Google Scholar 

  31. H.L. Yin, W.F. Cao, Y. Fu, Y.L. Tang, Y. Liu, T.Y. Chen, Z.B. Chen, Opt. Lett. 39, 5451 (2014)

    Article  ADS  Google Scholar 

  32. D. Rosenberg, J.W. Harrington, P.R. Rice, P.A. Hiskett, C.G. Peterson, R.J. Hughes, A.E. Lita, S.W. Nam, J.E. Nordholt, Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  33. A.R. Dixon, Z.L. Yuan, J.F. Dynes, A.W. Sharpe, A.J. Shields, Opt. Express 16, 18790 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Gao, M., Yan, B. et al. Universally-composable finite-key analysis for efficient four-intensity decoy-state quantum key distribution. Eur. Phys. J. D 70, 78 (2016). https://doi.org/10.1140/epjd/e2016-60655-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-60655-2

Keywords

Navigation