Skip to main content
Log in

Compensation and hysteresis behaviors in a mixed Ising ferrimagnetic model: Monte Carlo investigation

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We apply Monte Carlo simulation using the Metropolis single spin flip algorithm to study the magnetic and thermodynamic properties of a ferrimagnetic mixed-spin, \(S=\frac{7}{2}\) and \(\sigma =\frac{3}{2}\) alternating on a square lattice. The ground state phase diagrams are obtained for different parameters characterizing the system. The effects of the exchange coupling, the crystal field, the external magnetic field and the temperature on the magnetization, the specific heat, the compensation points and hysteresis loops are discussed in detail. The obtained results show that the studied system exhibits a compensation phenomenon, which depends on the combination of parameters in the Hamiltonian. Under certain physical parameters, multiple cycle hysteresis loop patterns have been observed in the system. It is found that the various parameters characterizing the Hamiltonian and the temperature strongly affect the coercivity and the remanence magnetization of the system. Comparing our results with other theoretical and experimental studies, a good agreement has been obtained qualitatively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data available upon request from authors.

References

  1. M. Donath, Magnetic order and electronic structure in thin films. J. Phys. Condens. Matter 11(48), 9421 (1999). https://doi.org/10.1088/0953-8984/11/48/306

    Article  ADS  Google Scholar 

  2. J. Sayama, T. Asahi, K. Mizutani, T. Osaka, Newly developed SmCo5 thin film with perpendicular magnetic anisotropy. J. Phys. D: Appl. Phys. 37(1), L1 (2003). https://doi.org/10.1088/0022-3727/37/1/L01

    Article  Google Scholar 

  3. M. Ertaş, M. Keskin, B. Deviren, Dynamic magnetic properties in the kinetic mixed spin-2 and spin-5/2 Ising model under a time-dependent magnetic field. Phys. A Stat. Mech. Appl. 391(4), 1038–1047 (2012)

    Article  Google Scholar 

  4. M. Keskin, M. Ertaş, Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field. Phys. Rev. E 80(6), 061140 (2009). https://doi.org/10.1103/PhysRevE.80.061140

    Article  ADS  Google Scholar 

  5. M. Ertaş, Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field. Superlatt. Microstruct. 85, 734–742 (2015). https://doi.org/10.1016/j.spmi.2015.07.006

    Article  ADS  Google Scholar 

  6. W. Jiang, V. Lo, B.-D. Bai, J. Yang, Magnetic hysteresis loops in molecular-based magnetic materials AFeIIFeIII(C2O4)3. Physi. A: Stat. Mech. Appl. 389(11), 2227–2233 (2010). https://doi.org/10.1016/j.physa.2010.01.050

    Article  Google Scholar 

  7. Influence of the shape on magnetic properties of ising nanostructures | SpringerLink. https://link.springer.com/article/10.1007/s10948-017-3985-9. (Consulté le 23 Septembre 2023)

  8. R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Monte Carlo simulation of magnetic properties of a mixed spin-1 and spin-3/2 ferrimagnetic Ising system. Chem. Phys. Lett. 631–632, 92–96 (2015). https://doi.org/10.1016/j.cplett.2015.05.004

    Article  ADS  Google Scholar 

  9. E. Kantar, Y. Kocakaplan, Hexagonal type Ising nanowire with mixed spins: some dynamic behaviors. J. Magn. Magn. Mater. 393, 574–583 (2015). https://doi.org/10.1016/j.jmmm.2015.06.009

    Article  ADS  Google Scholar 

  10. M. Drillon, E. Coronado, D. Beltran, R. Georges, Classical treatment of a heisenberg linear chain with spin alternation; application to the MnNi(EDTA)-6H2O complex. Chem. Phys. 79(3), 449–453 (1983). https://doi.org/10.1016/0301-0104(83)85267-7

    Article  Google Scholar 

  11. M. Ertaş, M. Bati, Dynamic critical phenomena in a multilayer Ising system. Chin. J. Phys. 66, 724–732 (2020). https://doi.org/10.1016/j.cjph.2020.03.030

    Article  MathSciNet  Google Scholar 

  12. M. Ertaş, Dynamic phenomena in mixed spin-1 and spin-1/2 ising bilayer system: effective-field theory based on glauber type stochastic dynamics. J. Supercond. Nov. Magn. 32(12), 3853–3863 (2019). https://doi.org/10.1007/s10948-019-05165-x

    Article  Google Scholar 

  13. X. Shi, J. Zhao, L. Wang, X. Xu, Compensation behaviors in the diluted FeIIFeIII bimetallic oxalates. J. Magn. Magn. Mater. 452, 477–482 (2018). https://doi.org/10.1016/j.jmmm.2017.11.048

    Article  ADS  Google Scholar 

  14. M. Gençaslan, M. Keskin, Dynamic magnetic hysteresis loop features of molecular-based magnetic materials and ferrimagnetic systems by the path probability method. J. Magn. Magn. Mater. 514, 167242 (2020). https://doi.org/10.1016/j.jmmm.2020.167242

    Article  Google Scholar 

  15. Dynamic magnetic hysteresis loop behaviors of a mixed spin (2, 5/2) Ising model on two interpenetrating square lattices—IOPscience. https://iopscience.iop.org/article/10.1088/1402-4896/ab783f/meta. (Consulté le 23 septembre 2023)

  16. M. Keskin, M. Ertaş, Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins. Phys. A: Stat. Mech. Appl. 496, 79–89 (2018). https://doi.org/10.1016/j.physa.2017.12.034

    Article  MathSciNet  Google Scholar 

  17. A. Feraoun, S. Amraoui, M. Kerouad, Critical and compensation behaviors of an Ising mixed spin-(5/2,3/2) on a nanographene layer. Appl. Phys. A 124(4), 329 (2018). https://doi.org/10.1007/s00339-018-1726-y

    Article  ADS  Google Scholar 

  18. A. Feraoun, M. Kerouad, A mixed-spin Ising system in a graphene layer with higher order exchange interaction couplings. Appl. Phys. A 123(12), 771 (2017). https://doi.org/10.1007/s00339-017-1351-1

    Article  ADS  Google Scholar 

  19. Q. Li, R. Li, W. Wang, R. Geng, H. Huang, S. Zheng, Magnetic and thermodynamic characteristics of a rectangle Ising nanoribbon. Phys. A: Stat. Mech. Appl. 555, 124741 (2020). https://doi.org/10.1016/j.physa.2020.124741

    Article  Google Scholar 

  20. Compensation behaviors and magnetic properties in a cylindrical ferrimagnetic nanotube with core-shell structure: a Monte Carlo study - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S1386947718302996 (Consulté le 23 Septembre 2023).

  21. D. Lv, F. Wang, R. Liu, Q. Xue, S. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure. J. Alloys Compd. 701, 935–949 (2017). https://doi.org/10.1016/j.jallcom.2017.01.099

    Article  Google Scholar 

  22. D. Lv, W. Jiang, Y. Ma, Z. Gao, F. Wang, Magnetic and thermodynamic properties of a cylindrical ferrimagnetic Ising nanowire with core/shell structure. Phys. E Low-Dimen. Syst. Nanostruct. 106, 101–113 (2019). https://doi.org/10.1016/j.physe.2018.08.021

    Article  ADS  Google Scholar 

  23. H. Wu, W. Wang, D. Lv, C. Chang, B. Li, M. Tian, Dynamic magnetic properties of a double-layer core–shell graphene nanoisland in an oscillating magnetic field. J. Magn. Magn. Mater. 515, 167306 (2020). https://doi.org/10.1016/j.jmmm.2020.167306

    Article  Google Scholar 

  24. A. Elidrysy, S. Harir, A. Zouhair, Y. Boughaleb, Anisotropic effect on local magnetic properties of 3D extended ising model. In: Spin, World Scientific, 2050015 (2020)

  25. A. Elidrysy, S. Harir, A. Zouhair, Y. Boughaleb, Phase diagrams and compensation behaviors of a mixed Spin-(3/2, 1) Ising-Type Ferrimagnet: Monte Carlo investigation. J. Magn. Magn. Mater. 553, 169271 (2022). https://doi.org/10.1016/j.jmmm.2022.169271

    Article  Google Scholar 

  26. A. Elidrysy, S. Harir, A. Zouhair, Y. Boughaleb, Simulation of an extended 3D mixed Ising model by Monte Carlo method. Mater. Today Proc. 30, 993–997 (2020)

    Article  Google Scholar 

  27. E. Kantar, M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: effective-field theory approach. J. Magn. Magn. Mater. 349, 165–172 (2014). https://doi.org/10.1016/j.jmmm.2013.08.034

    Article  ADS  Google Scholar 

  28. Effects of indirect exchange interactions in a mixed-spin bilayer film with nonmagnetic layers|SpringerLink. https://link.springer.com/article/10.1007/s10948-017-4463-0 (Consulté le 23 Septembre 2023).

  29. Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. Phys. Rev. E 77, 051130 (2008). https://journals.aps.org/pre/abstract/10.1103/PhysRevE.77.051130 (Consulté le 23 Septembre 2023)

  30. Single-minute exchange of die (SMED): a state-of-the-art literature review | SpringerLink. https://link.springer.com/article/10.1007/s00170-019-03484-w (Consulté le 23 Septembre 2023).

  31. H.K. Mohamad, E.P. Domashevskaya, A.F. Klinskikh, Spin compensation temperatures in the mean-field approximation of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system. Phys. A Stat. Mech. Appl. 388(22), 4713–4718 (2009). https://doi.org/10.1016/j.physa.2009.08.014

    Article  Google Scholar 

  32. N. Hachem, A. Lafhal, H. Zahir, M. El Bouziani, M. Madani, A. Alrajhi, The spin-2 Blume–Capel model by position space renormalization group. Superlatt. Microstruct. 111, 927–937 (2017). https://doi.org/10.1016/j.spmi.2017.07.057

    Article  ADS  Google Scholar 

  33. A.E. Antari et al., Mixed spin-1/2 and spin-5/2 model by renormalization group theory: recursion equations and thermodynamic study. Int. J. Theor. Phys. 57(8), 2330–2342 (2018). https://doi.org/10.1007/s10773-018-3756-9

    Article  MathSciNet  Google Scholar 

  34. N. Benayad, A. Klümper, J. Zittartz, A. Benyoussef, Two-dimensional mixed spin Ising models with bond dilution and random ± J interactions. Z. Physik B Conden. Matter 77(2), 339–341 (1989). https://doi.org/10.1007/BF01313679

    Article  ADS  Google Scholar 

  35. A. El Ghazrani, A. Elidrysy, A. Lahbibi, S. Harir, L. B. Drissi, Critical properties of 2D Anisotropic ising model with more than nearest neighbor interaction. In: Spin, World Scientific, 2250010 (2022)

  36. H. Bouda, T. Bahlagui, L. Bahmad, R. Masrour, A. El Kenz, A. Benyoussef, Hysteresis cycle and magnetization behaviors of a mixed-Spin (7/2, 3/2) Ferrimagnetic ising model: monte carlo investigation. J. Supercond. Nov Magn. 32(8), 2539–2550 (2019). https://doi.org/10.1007/s10948-018-4981-4

    Article  Google Scholar 

  37. H.K. Mohamad, A. Zuhair, Ground-state phase diagram of a mixed spin-3/2 and Spin-7/2 ising model: a study of complex [Cr(CN)4(μ-CN)2Gd(H2O)4-(bpy)]n4n.H2O.1.5nbpy. J. Supercond. Nov. Magn. 33(5), 1481–1487 (2020). https://doi.org/10.1007/s10948-019-05352-w

    Article  Google Scholar 

  38. A. Figuerola, C. Diaz, M.S.E. Fallah, J. Ribas, M. Maestro, J. Mahía, Structure and magnetism of the first cyano-bridged hetero-one-dimensional GdIII–CrIII complexes. Chem. Commun. (2001). https://doi.org/10.1039/B102739P

    Article  Google Scholar 

  39. K. Yoshii, Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 159(1), 204–208 (2001). https://doi.org/10.1006/jssc.2000.9152

    Article  ADS  Google Scholar 

  40. A. Elidrysy, S. Harir, D. Farsal, Y. Boughaleb, Monte Carlo study of the magnetic phase diagram and magnetocaloric effect of square mixed spins. J. Supercond. Novel Magn. 1‑8 (2023)

  41. W. Wang, D. Chen, D. Lv, J. Liu, Q. Li, Z. Peng, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure. J. Phys. Chem. Sol. 108, 39–51 (2017). https://doi.org/10.1016/j.jpcs.2017.04.014

    Article  ADS  Google Scholar 

  42. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953). https://doi.org/10.1063/1.1699114

    Article  ADS  Google Scholar 

  43. M. Karimou, R. A. Yessoufou, T. D. Oke, A. Kpadonou, F. Hontinfinde, Bethe approach study of the mixed spin-1/2 and spin-5/2 Ising system in the presence of an applied magnetic field (2016). https://arxiv.org/abs/1609.04687v1 (Consulté le 23 septembre 2023).

  44. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J. Mem. Biol. https://link.springer.com/article/10.1007/s00232-010-9271-4 (Consulté le 23 septembre 2023).

  45. Z. Alborzi, A. Hassanzadeh, M.M. Golzan, Superparamagnetic behavior of the magnetic hysteresis loop in the Fe2O3@Pt core-shell nanoparticles. Int. J. Nanosci. Nanotechnol. 8(2), 93–98 (2012)

    Google Scholar 

  46. S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J.J. de Miguel, Hysteresis loops and susceptibility of a transverse Ising nanowire. J. Magn. Magn. Mater. 324(16), 2434–2441 (2012). https://doi.org/10.1016/j.jmmm.2012.02.104

    Article  ADS  Google Scholar 

  47. R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Phys. B Conden. Matter 472, 19–24 (2015). https://doi.org/10.1016/j.physb.2015.05.010

    Article  ADS  Google Scholar 

  48. M. Arejdal et al., Magnetic properties of the DoublePerovskite Ba2CoUo6: ab initio method, mean field approximation, and Monte Carlo study. J. Supercond. Nov. Magn. 29(10), 2659–2667 (2016). https://doi.org/10.1007/s10948-016-3598-8

    Article  Google Scholar 

Download references

Funding

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated actively in (a) the conception and the design, or in the analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to A. Elidrysy.

Ethics declarations

Conflict of interest

The authors declare that this contribution is original, has not been published elsewhere, and is not currently under review elsewhere. All the authors have agreed to the submission of manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elidrysy, A., Harir, S., Farsal, D. et al. Compensation and hysteresis behaviors in a mixed Ising ferrimagnetic model: Monte Carlo investigation. Eur. Phys. J. B 97, 32 (2024). https://doi.org/10.1140/epjb/s10051-024-00666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00666-8

Navigation