Skip to main content
Log in

Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

On the two-dimensional non-linear Σ-model describing a ferromagnet with Dzyaloshinskii-Moriya interaction, we build three families of exact static solutions depending on a single Cartesian variable. One of them describes a clockwise helix configuration, that characterizes the ground state of the system. A second one corresponds to a counterclockwise helix, representing an excited state. These two families of solutions are parameterized by a continuous parameter that depends on the magnetic field and the Dzyaloshinskii-Moriya coupling. Finally, the third family exists only for isolated values of the same parameter, corresponding to a discrete family of Viviani curves on the target sphere. The degeneracy of the resulting spectrum suggests that an approximate symmetry may emerge at specific values of the magnetic field, at which additional solutions could then exist.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.E. Dzyaloshinskii, J. Exp. Theor. Phys. (U.S.S.R.) 46, 1420 (1964)

    Google Scholar 

  2. D.A. Yablonskii, A.N. Bogdanov, Zh. Eksp. Teor. Fiz. 95, 178 (1989)

    Google Scholar 

  3. A. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994)

    Article  ADS  Google Scholar 

  4. A. Bogdanov, A. Hubert, J. Magn. Magn. Mater. 195, 182 (1999)

    Article  ADS  Google Scholar 

  5. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni, Science 323, 915 (2009)

    Article  ADS  Google Scholar 

  6. Y. Ishikawa, M. Arai, J. Phys. Soc. Jpn. 53, 2726 (1984)

    Article  ADS  Google Scholar 

  7. B. Lebech, P. Harris, J. Skov Pedersen, K. Mortensen, C.I. Gregory, N.R. Bernhoeft, M. Jermy, S.A. Brown, J. Magn. Magn. Mater. 140–144, 119 (1995)

    Article  ADS  Google Scholar 

  8. K. Shibata, X.Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Nanotechnol. 8, 723 (2013)

    Article  ADS  Google Scholar 

  9. B. Lebech, J. Bernhard, T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989)

    ADS  Google Scholar 

  10. M. Uchida, N. Nagaosa, J.P. He, Y. Kaneko, S. Iguchi, Y. Matsui, Y. Tokura, Phys. Rev. B 77, 184402 (2008)

    Article  ADS  Google Scholar 

  11. X.Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W.Z. Zhang, S. Ishiwata, Y. Matsui, Y. Tokura, Nat. Mater. 10, 106 (2011)

    Article  ADS  Google Scholar 

  12. H. Wilhelm, M. Baenitz, M. Schmidt, U.K. Rößler, A.A. Leonov, A.N. Bogdanov, Phys. Rev. Lett. 107, 127203 (2011)

    Article  ADS  Google Scholar 

  13. J. Beille, J. Voiron, M. Roth, Solid State Commun. 47, 399 (1983)

    Article  ADS  Google Scholar 

  14. S.V. Grigoriev, V.A. Dyadkin, D. Menzel, J. Schoenes, Y.O. Chetverikov, A.I. Okorokov, H. Eckerlebe, S.V. Maleyev, Phys. Rev. B 76, 224424 (2007)

    Article  ADS  Google Scholar 

  15. S.V. Grigoriev, D. Chernyshov, V.A. Dyadkin, V. Dmitriev, S.V. Maleyev, E.V. Moskvin, D. Menzel, J. Schoenes, H. Eckerlebe, Phys. Rev. Lett. 102, 37204 (2009)

    Article  ADS  Google Scholar 

  16. Y. Onose, N. Takeshita, C. Terakura, H. Takagi, Y. Tokura, Phys. Rev. B 72, 224431 (2005)

    Article  ADS  Google Scholar 

  17. I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L.M. Eng, J.S. White, H.M. Rønnow, C.D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, A. Loidl, Nat. Mater. 14, 1116 (2015)

    Article  ADS  Google Scholar 

  18. S. Seki, X.Z. Yu, S. Ishiwata, Y. Tokura, Science (New York) 336, 198 (2012)

    Article  ADS  Google Scholar 

  19. T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Phys. Rev. Lett. 108, 237204 (2012)

    Article  ADS  Google Scholar 

  20. G. Baskaran, Possibility of Skyrmion Superconductivity in Doped Antiferromagnet K2Fe4Se5, https://arXiv:1108.3562 (2011)

  21. S.D. Yi, S. Onoda, N. Nagaosa, J.H. Han, Phys. Rev. B 80, 54416 (2009)

    Article  ADS  Google Scholar 

  22. J.H. Han, J. Zang, Z. Yang, J.-H. Park, N. Nagaosa, Phys. Rev. B 82, 94429 (2010)

    Article  ADS  Google Scholar 

  23. N. Grandi, M. Sturla, Int. J. Mod. Phys. B 32, 1850008 (2018)

    Article  ADS  Google Scholar 

  24. F.S. Nogueira, I. Eremin, F. Katmis, J.S. Moodera, J. van den Brink, V.P. Kravchuk, Phys. Rev. B 98, 060401 (2018)

    Article  ADS  Google Scholar 

  25. S. Gattei,On the life of Galileo: Viviani’s Historical account and other early biographies (Princeton University Press, 2019)

  26. A.M. Serralunga Bardazza,Clelia Grillo Borromeo Arese: vicende private e pubbliche virtù di una celebre nobildonna nell’Italia del Settecento (Eventi & Progetti, 2005)

  27. R.P. Agarwal, S.K. Sen,Creators of mathematical and computational sciences (Springer International Publishing, Cham, 2014)

  28. A. Gray,Modern differential geometry of curves and surfaces with Mathematica (CRC Press, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Grandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandi, N., Lagos, M., Oliva, J. et al. Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction. Eur. Phys. J. B 92, 244 (2019). https://doi.org/10.1140/epjb/e2019-100395-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100395-3

Keywords

Navigation