Skip to main content
Log in

Nagaoka’s Theorem in the Holstein–Hubbard Model

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Nagaoka’s theorem on ferromagnetism in the Hubbard model is extended to the Holstein–Hubbard model. This shows that Nagaoka’s ferromagnetism is stable even if the electron–phonon interaction is taken into account. We also prove that Nagaoka’s ferromagnetism is stable under the influence of the quantized radiation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faris, W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math. Phys. 13, 1285–1290 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Giuliani, A., Mastropietro, V., Porta, M.: Lattice quantum electrodynamics for graphene. Ann. Phys. 327, 461–511 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Katsura, H., Tanaka, A.: Nagaoka states in the \(SU(n)\) Hubbard model. Phys. Rev. A 87, 013617 (2013)

    Article  ADS  Google Scholar 

  4. Kohno, M.: Aspects of the ground state of the \(U=\infty \) Hubbard ladder. Phys. Rev. B 56, 15015–15024 (1997)

    Article  ADS  Google Scholar 

  5. Kollar, M., Strack, R., Vollhardt, D.: Ferromagnetism in correlated electron systems: generalization of Nagaoka’s theorem. Phys. Rev. B 53, 9225–9231 (1996)

    Article  ADS  Google Scholar 

  6. Lieb, E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lorinczi, J., Hiroshima, F., Betz, V.: Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory. Walter de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Mielke, A.: Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. A 24, L73 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory 64, 207–241 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Miyao, T.: Self-dual cone analysis in condensed matter physics. Rev. Math. Phys. 23, 749–822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Miyao, T.: Ground state properties of the SSH model. J. Stat. Phys. 149, 519–550 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Miyao, T.: Monotonicity of the polaron energy. Rep. Math. Phys. 74, 379–398 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Miyao, T.: Monotonicity of the polaron energy II: general theory of operator monotonicity. J. Stat. Phys. 153, 70–92 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Miyao, T.: Upper bounds on the charge susceptibility of many-electron systems coupled to the quantized radiation field. Lett. Math. Phys. 105, 1119–1133 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Miyao, T.: Quantum Griffiths inequalities. J. Stat. Phys. 164, 255–303 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Miyao, T.: Rigorous results concerning the Holstein–Hubbard model. Ann. Henri Poincaré 18, 193–232 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Miyao, T.: Correlation inequalities for Schrödinger operators. arXiv:1608.00648

  18. Miyao, T.: Ground state properties of the Holstein–Hubbard model. arXiv:1610.09039

  19. Miura, Y.: On order of operators preserving selfdual cones in standard forms. Far East J. Math. Sci. (FJMS) 8, 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Nagaoka, Y.: Ground state of correlated electrons in a narrow almost half-filled \(s\) band. Solid State Commun. 3, 409–412 (1965)

    Article  ADS  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, Revised and Enlarged Edition, vol. I. Academic Press, New York (1980)

    Google Scholar 

  22. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Analysis of Operators, vol. IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  23. Shastry, B.S., Krishnamurthy, H.R., Anderson, P.W.: Instability of the Nagaoka ferromagnetic state of the \(U=\infty \) Hubbard model. Phys. Rev. B 41, 2375–2379 (1990)

    Article  ADS  Google Scholar 

  24. Tasaki, H.: Extension of Nagaoka’s theorem on the large-\(U\) Hubbard model. Phys. Rev. B 40, 9192–9193 (1989)

    Article  ADS  Google Scholar 

  25. Tasaki, H.: From Nagaoka’s ferromagnetism to flat-band ferromagnetism and beyond an introduction to ferromagnetism in the Hubbard model. Prog. Theor. Phys. 99, 489–548 (1998)

    Article  ADS  Google Scholar 

  26. Tasaki, H.: Ferromagnetism in the Hubbard model: a constructive approach. Commun. Math. Phys. 242, 445–472 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Thouless, D.J.: Exchange in solid \({}^3{{\rm He}}\) and the Heisenberg Hamiltonian. Proc. Phys. Soc. Lond. 86, 893–904 (1965)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by KAKENHI (20554421) and KAKENHI(16H03942). I would be grateful to the anonymous referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Miyao.

Additional information

Communicated by Vieri Mastropietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyao, T. Nagaoka’s Theorem in the Holstein–Hubbard Model. Ann. Henri Poincaré 18, 2849–2871 (2017). https://doi.org/10.1007/s00023-017-0584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0584-z

Navigation