Skip to main content
Log in

Time evolution of an entangled initial state in coupled quantum dots with Coulomb correlations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We proved that for arbitrary mixed state the concurrence and the entanglement are determined by the average value of electron’s pair correlation functions particular combinations. We analyzed the dynamics of the initial two-electronic state in two interacting single-level quantum dots (QDs) with Coulomb correlations, weakly tunnel coupled with an electronic reservoir. We obtained correlation functions of all orders for electrons in the QDs by decoupling high-order correlations between localized and band electrons in the reservoir. Analysis of the pair correlation functions time evolution allows to follow the changes of the concurrence and the entanglement during the relaxation and transient processes. We investigated dependence of the concurrence on the value of Coulomb interaction and energy levels spacing and found its monotonic behavior. The most interesting physical effect is that more entangled state than the initial one can be formed during the charge relaxation due to the Coulomb correlations. We also demonstrated that behavior of the two-electronic entangled state pair correlation functions in coupled QDs points to the fulfillment of the Hund’s rule for the strong Coulomb interaction. We revealed the appearance of dynamical inverse occupation of the QDs energy levels during the relaxation processes. Our results open up further perspectives in solid state quantum information based on the controllable dynamics of the entangled electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)

  2. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  3. H.-A. Engel, L. Kouwenhoven, D. Loss, C. Marcus, Quantum Inf. Process 3, 115 (2004)

    Article  MATH  Google Scholar 

  4. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilevski, O. Stern, A. Forchel, Science 291, 451 (2001)

    Article  ADS  Google Scholar 

  5. P.I. Arseyev, N.S. Maslova, V.N. Mantsevich, J. Exp. Theor. Phys. Lett. 94, 390 (2011)

    Article  Google Scholar 

  6. C. Creatore, R.T. Brierly, R.T. Phillips, P.B. Littlewood, P.R. Eastham, Phys. Rev. B 86, 155442 (2012)

    Article  ADS  Google Scholar 

  7. A.V. Tsukanov, Phys. Rev. A 72, 022344 (2005)

    Article  ADS  Google Scholar 

  8. N. Yokoshi, H. Imamura, H. Kosaka, Phys. Rev. B 88, 155321 (2013)

    Article  ADS  Google Scholar 

  9. G. Burkard, D. Loss, E.V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)

    Article  ADS  Google Scholar 

  10. R. Sanchez, G. Platero, Phys. Rev. B 87, 081305 (2013)

    Article  ADS  Google Scholar 

  11. F. Cicarello, G. Palma, M. Zarcone, Y. Omar, V. Vicira, J. Phys. A 40, 7993 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  13. G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  14. M. Blaauboer, D.P. DiVincenzo, Phys. Rev. Lett. 95, 160402 (2005)

    Article  ADS  Google Scholar 

  15. V.N. Mantsevich, N.S. Maslova, P.I. Arseyev, Solid State Commun. 168, 36 (2013)

    Article  ADS  Google Scholar 

  16. V.N. Mantsevich, N.S. Maslova, P.I. Arseyev, Solid State Commun. 152, 1545 (2012)

    Article  ADS  Google Scholar 

  17. A.N. Vamivakas, C.-Y. Lu, C. Matthiesen, Y. Zhao, S. Falt, A. Badolato, M. Atature, Nat. Lett. 467, 297 (2010)

    Article  ADS  Google Scholar 

  18. E.A. Stinaff, M. Scheibner, A.S. Bracker, I.V. Ponomarev, V.L. Korenev, M.E. Ware, M.F. Doty, T.L. Reinecke, D. Gammon, Science 311, 636 (2006)

    Article  ADS  Google Scholar 

  19. K. Kikoin, Y. Avishai, Phys. Rev. B 65, 115329 (2002)

    Article  ADS  Google Scholar 

  20. P.I. Arseyev, N.S. Maslova, V.N. Mantsevich, Eur. Phys. J. B 85, 249 (2012)

    Article  ADS  Google Scholar 

  21. V.N. Mantsevich, P.I. Arseyev, N.S. Maslova, J. Exp. Theor. Phys. 118, 136 (2014)

    Article  ADS  Google Scholar 

  22. M.D. Shulman, O.E. Dial, S.P. Harvey, Science 336, 202 (2012)

    Article  ADS  Google Scholar 

  23. P.I. Arseyev, N.S. Maslova, V.N. Mantsevich, J. Exp. Theor. Phys. 115, 141 (2012)

    Article  ADS  Google Scholar 

  24. M.A. Kastner, Phys. Today 46, 24 (1993)

    Article  ADS  Google Scholar 

  25. R.C. Ashoori, Nature 379, 413 (1996)

    Article  ADS  Google Scholar 

  26. I. Chan et al., Nanotechnology 15, 609 (2004)

    Article  ADS  Google Scholar 

  27. P.I. Arseyev, N.S. Maslova, V.N. Mantsevich, Eur. Phys. J. B 85, 410 (2012)

    Article  ADS  Google Scholar 

  28. J.P. Dowling, G.J. Milburn, arXiv:quant-ph/0206091v1 (2002)

  29. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  30. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  31. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  32. G.E. Murgida, D.A. Wisniacki, P.I. Tamborenea, Phys. Rev. Lett. 99, 036806 (2007)

    Article  ADS  Google Scholar 

  33. M. Kataoka, M.R. Astley, A.L. Thorn, D.K.L. Oi, C.H.W. Barnes, C.J.B. Ford, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 102, 156801 (2009)

    Article  ADS  Google Scholar 

  34. A. Putaja, E. Rasanen, Phys. Rev. B 82, 165336 (2010)

    Article  ADS  Google Scholar 

  35. L. Saelen, R. Nepstad, I. Degani, J.P. Hansen, Phys. Rev. Lett. 100, 046805 (2008)

    Article  ADS  Google Scholar 

  36. F. Hund, Z. Phys. 33, 345 (1925)

    Article  ADS  MATH  Google Scholar 

  37. F. Hund, Z. Phys. 34, 296 (1925)

    Article  ADS  Google Scholar 

  38. S. Schroter, H. Friedrich, J. Madronero, Phys. Rev. A 87, 042507 (2013)

    Article  ADS  Google Scholar 

  39. M. Nizama, D. Frustaglia, K. Hallberg, Phys. Rev. B 86, 075413 (2012)

    Article  ADS  Google Scholar 

  40. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  41. L.D. Contreras-Pulido, R. Aguado, Phys. Rev. B 77, 155420 (2008)

    Article  ADS  Google Scholar 

  42. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  43. S. Amaha, T. Hatano, W. Izumida, S. Teraoka, K. Ono, K. Kono, S. Tarucha, G. Aers, J. Gupta, G. Austig, Jpn J. Appl. Phys. 51, 02BJ06 (2012)

    Article  Google Scholar 

  44. J. Fransson, Phys. Rev. B 69, 201304 (2004)

    Article  ADS  Google Scholar 

  45. S.Y. Cho, R.H. McKenzie, Phys. Rev. A 73, 012109 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Mantsevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, N., Mantsevich, V. & Arseyev, P. Time evolution of an entangled initial state in coupled quantum dots with Coulomb correlations. Eur. Phys. J. B 88, 8 (2015). https://doi.org/10.1140/epjb/e2014-50678-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50678-x

Keywords

Navigation